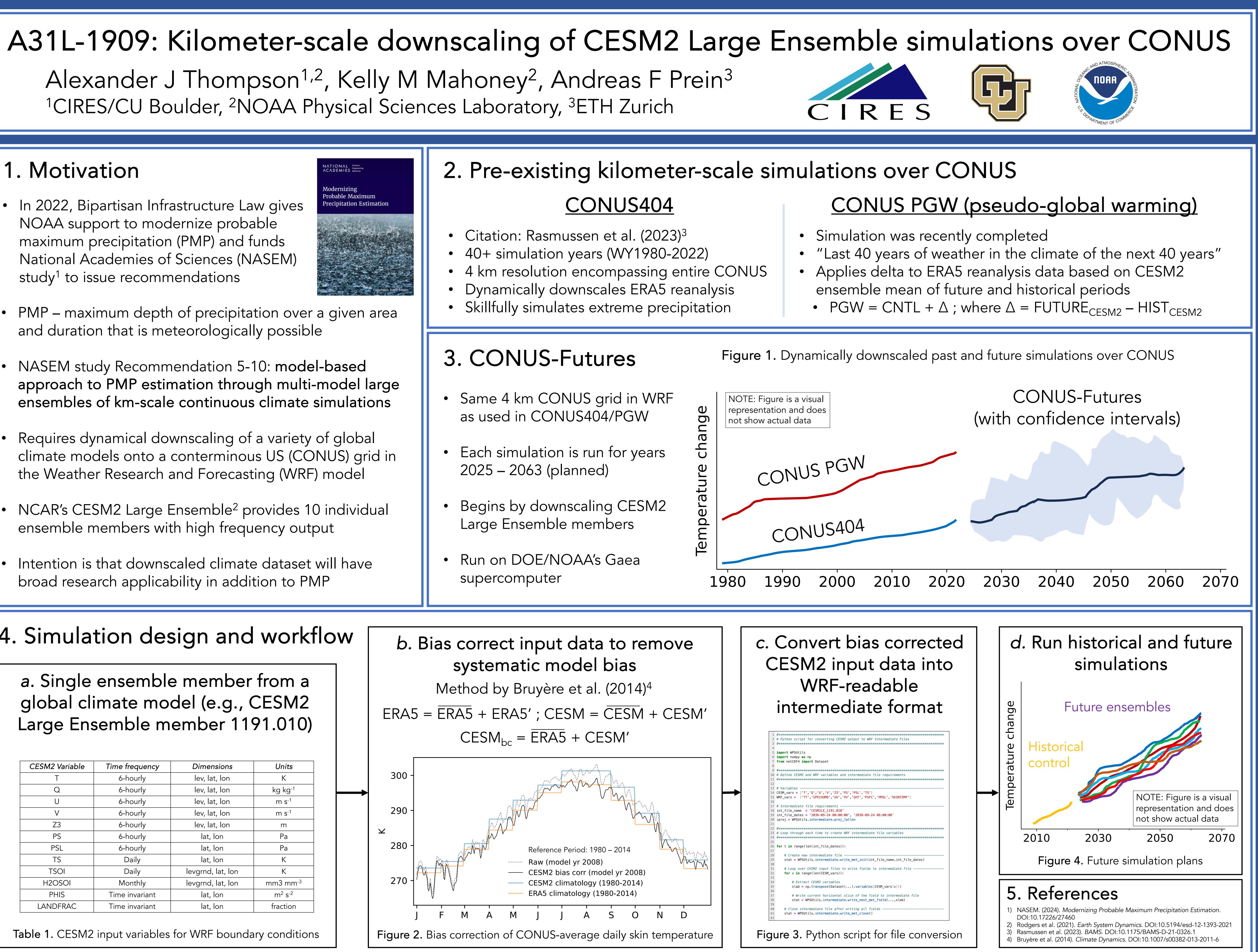
Alexander J Thompson^{1,2}, Kelly M Mahoney², Andreas F Prein³ ¹CIRES/CU Boulder, ²NOAA Physical Sciences Laboratory, ³ETH Zurich

1. Motivation

- In 2022, Bipartisan Infrastructure Law gives NOAA support to modernize probable maximum precipitation (PMP) and funds National Academies of Sciences (NASEM) study¹ to issue recommendations
- PMP maximum depth of precipitation over a given area and duration that is meteorologically possible
- NASEM study Recommendation 5-10: model-based approach to PMP estimation through multi-model large ensembles of km-scale continuous climate simulations
- Requires dynamical downscaling of a variety of global climate models onto a conterminous US (CONUS) grid in the Weather Research and Forecasting (WRF) model
- NCAR's CESM2 Large Ensemble² provides 10 individual ensemble members with high frequency output
- Intention is that downscaled climate dataset will have broad research applicability in addition to PMP

4. Simulation design and workflow


a. Single ensemble member from a global climate model (e.g., CESM2 Large Ensemble member 1191.010)

CESM2 Variable	Time frequency	Dimensions	Units
Т	6-hourly	lev, lat, lon	К
Q	6-hourly	lev, lat, lon	kg kg⁻¹
U	6-hourly	lev, lat, lon	m s⁻¹
V	6-hourly	lev, lat, lon	m s ⁻¹
Z3	6-hourly	lev, lat, lon	m
PS	6-hourly	lat, lon	Pa
PSL	6-hourly	lat, lon	Pa
TS	Daily	lat, lon	К
TSOI	Daily	levgrnd, lat, lon	К
H2OSOI	Monthly	levgrnd, lat, lon	mm3 mm ⁻³
PHIS	Time invariant	lat, lon	m ² s ⁻²
LANDFRAC	Time invariant	lat, lon	fraction

 Table 1. CESM2 input variables for WRF boundary conditions

NATIONAL ACADEMIES bable Maximum Precipitation Estimation

- 2025 2063 (planned)
- Large Ensemble members
- supercomputer

