

A Small UAS Payload for Infrared Remote Measurement of Wildfire Intensity – NightFOX

MOTIVATION

As large fires get more complex, wildland firefighters and wildfire modelers want accurate measurements of fire intensity and spread. However:

- Satellite observations are coarse and infrequent
- Aircraft observations are complex and expensive
- Fire forecasts lack detailed input data

CIRES

What do we do? Let's use **small Uncrewed Aerial Systems** (sUAS) to link the measurement chain from satellites suites to the ground. Hence, the Nighttime Fire Observations eXperiment – **NightFOX**.

Fire practitioners increasingly use UAS technology for situational awareness. Credit: USDA Forest Service

	BANDPASS	OPTICAL INSTRUMENT DETAILS
	Visible	FLIR Duo R, 90° x 51° FOV, 1920 x 1080 pixels
	SWIR	Custom camera, 23° x 23° FOV, 1.0-1.7 µm, 64 x 64 pixels
	Near IR	Custom scanning scope, 1° FOV, 1.610 µm, ±30° scan across the flight track
	Mid IR (4 µm)	Custom scanning scope, 1° FOV, 3.960 µm, ±30° scan across the flight track
	Thermal IR	FLIR Duo R, 57° x 44° FOV, 7.5-13.5 μm, 160 x 120 pixels

SOURCES

https://modis.gsfc.nasa.gov/about/specifications.php https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/viirs/

Thornberry, T. D., Gao, R. S., Ciciora, S. J., Watts, L. A., McLaughlin, R. J., Leonardi, A., Rosenlof, K. H., Argrow, B. M., Elston, J. S., Stachura, M., Fromm, J., Brewer, W. A., Schroeder, P., & Zucker, M. (2023). A Lightweight Remote Sensing Payload for Wildfire Detection and Fire Radiative Power Measurements. Sensors, 23(7), 3514. https://doi.org/10.3390/s23073514

INSTRUMENT PAYLOAD

Our payload remotely observes fire radiative power with narrow-band IR single-element scanners and fire extent with wide-band IR imagers.

Joey Taylor^{1,2}, Ru-Shan Gao^{1,2}, Samantha Lee^{1,2}, Steve Ciciora², Joshua Schwarz², Troy Thornberry² ¹. Cooperative Institute for Research in Environmental Sciences, CU Boulder. ². NOAA Chemical Sciences Laboratory

BLACK SWIFT TECHNOLOGIES S2 sUAS

DATA PRODUCTS

PAYLOAD FACT SHEET			
Payload Weight:	< 2 kg		
Sensor Resolution,	Scanners: ~ 18 m		
1 km Flight Alt:	MWIR Imager: ~ 7 m		
mparable Satellite	VIIRS: 375 m		
ensor Resolution:	MODIS: 1 km		
ST S2 Endurance:	Up to 2 hours		
F S2 Cruise Speed:	18 m s⁻¹		
omparable VIIRS	I3 (1.61 μm), M10 (1.61 μm)		
channels (CWL)	I4 (3.74 μm), M13 (4.05 μm)		
mparable MODIS	6 (1.628 - 1.652 μm)		
annels (bandpass)	21, 22 (3.929 - 3.989 μm)		

NEXT STEPS

We seek to further demonstrate the capabilities of this payload by measuring the radiative power of active wildfire via UAS from the 1 km design altitude. Any and all suggestions for collaboration or connection with fire practitioners are appreciated.

ACKNOWLEDGEMENTS

Special thanks to LW. We would also like to thank our collaborators at Black Swift Technologies for their flight and logistics support and UAS expertise. Title photo is of the Fourmile Canyon Fire, 2010. Credit for photo: Dan Lack. This research was supported in part by NOAA cooperative agreement NA22OAR4320151, for the Cooperative Institute for Earth System Research and Data Science (CIESRDS).