

University of Colorado Boulder, Department of Geography; Cooperative Institute for Research in Environmental Sciences Contact: chris.picard@colorado.edu

- using Cryo2lce within Fram Strait?
- ICESat-2 (IS2), yields the most accurate SITs?

Product	Parameter	Citation
IS2 ATL10	Lidar freeboard	Kwok et al. (2023)
CS2 ESA-E Level 2	Radar freeboard	ESA (2019)
CS2 AWI Level 2	Radar freeboard	Hendricks et al. (202
CS2 LARM Level 2	Radar freeboard	Landy et al. (2019)
Upward-looking sonar	Sea ice thickness	Dmitry Divine, Svetla
Modified Warren Snow Climatology (mW99)	Snow depth	Warren et al. (1999)
SnowModel-LG (SMLG)	Snow depth	Liston et al. (2020)
NASA Eulerian Snow on Sea Ice Model (NESOSIM)	Snow depth	Petty et al. (2018)
MOSAiC Snow Density	Snow density	Macfarlane et al. (20
EUMETSAT OSI SAF Global Sea Ice Type	Sea ice age	EUMETSAT OSI SAF (

Fram Strait Sea Ice Thickness from ICESat-2 and CryoSat-2 Freeboards Christopher J. Picard and Waleed Abdalati

Fig. 5: Kernel density estimates of daily mean SIT for ULS and total Cryo2Ice SIT distributions using ESA-E, AWI, and LARM over 2020-2022. The shaded region is the ULS distribution used for validation, and the dashed line corresponds to its modal peak.

Fig. 6: Scatterplots comparing LARM & Δfs SITs with (a,d) LARM & SMLG SITs, (b,e) LARM & NESOSIM SITs, and (c,f) LARM and mW99 SITs over 2019-2021. The first row of plots (a-c) is for FYI and the second row (d-f) is for MYI. The dashed black lines represent 1:1 slopes.

- with ULS

- **1.** Kwok, R. *et al.* (2023)
- **2.** European Space Agency. (2019)
- **3.** Hendricks, S. *et al.* (2024)
- 4. Landy, J. C. et al. JGR Oceans 125, e2019JC015820 (2020)
- 5. Warren, S. G. et al. J. Climate 12, 1829 (1999)

Sea ice thickness (m)

Takeaways

• The optimal Cryo2lce combination is IS2 with CS2 LARM • SIT can be accurately constrained using Cryo2lce within Fram Strait • Cryo2lce distributions using IS2 and CS2 LARM agree closely

• Modeled and climatological snow depths lead to SIT overestimates • ULS provides more continuous sampling than Cryo2lce and remains the best method for estimating SIT within Fram Strait

References		
	6. Liston, G. <i>et al.</i> (2021)	
	7. Petty, A. (2024)	
	8. EUMETSAT OSI SAF. (2025)	
),	9. Macfarlane, A. R. <i>et al.</i> (2022)	
	10. Fredensborg Hansen, R. M. <i>et al. Earth</i>	
1814–	<i>and Space Science</i> 11, e2023EA003313 (2024)	