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SUMMARY

Machine Learning based weather prediction (AINWP) is be-
coming increasingly common. AINWP relies on reanalysis,
and thus traditional numerical weather prediction (NWP),
for training data sets, but has clear advantages over NWP in
that forecasts are very cheap to run once the model has been
trained. Initial evaluation of AINWP shows that it can pro-
vide forecasts at comparable or even higher accuracy than
NWP.

Here we investigate a set of 10 day forecasts from the
GFSv16 operational model and compare those to forecasts
from GraphCast with two sets of initial conditions (Graph-
Cast (GFS) and GraphCast (IFS)) for the time period January
2022 - September 2024. Daily initializations during this time
allow for skill evaluation by lead time.

We show that these models have very different underlying
behavior in their tropical large-scale convection and coupling
to dynamics. GraphCast forecasts have similar precipita-
tion biases to ERA5, lower occurence of higher precipita-
tion rates and stronger precipitation-circulation coupling at
CCEW scales. The latter should, in theory, translate to im-
proved teleconnections to and potentially enhaced subsea-
sonal skill in mid-latitude precipitation forecasts. This is cur-
rently under further investigation.

SPACE-TIME POWER AND COHERENCE SPECTRA

Precipitation power spectra at 24h lead time (top). Difference be-
tween precipitation power at 48h and 24h lead time (middle), and
difference between precipitation power at 120h and 24h lead time
(bottom).

Coherence-squared spectra for precipitation and divergence at
850hPa (coh2(P,D850)) at 24h lead time (top). Difference between
coh2(P,D850) at 48h and 24h lead time (middle), and difference be-
tween coh2(P,D850) at 120h and 24h lead time (bottom).

GraphCast shows decreasing variance at high frequencies and wave numbers early in the forecast, while GFSv16 shows
decreasing variance in regions of CCEWs activity. Coherence between precipitation and divergence in GraphCast in-
creases with lead time independent of scale, while GFSv16 coherence decreases mainly in regions of CCEWs activity.

PRECIPITATION SKILL

CCEW activity skill

Comparable skill for GFSv16 and GraphCast. Better skill for
GFSv16 at lead time 96h for ER?

Hovmoeller Pattern Correlation

ERA5 verification: Better skill for GraphCast at lead time 24h, com-
parable skill for GFSv16 and GraphCast (GFS) at longer leads.

PRECIPITATION RATE DISTRIBUTION

Distribution of precipitation
rates using logarithmic bin
sizes, plotted on log x axis.

Distribution of precipitation rates
using logarithmic bin sizes, plotted
on linear x axis.

Models and ERA5 precipitation show erroneous peak in low
precipitation rates. At 24h lead time models match ERA5
pretty well at low rates and GFSv16 underestimates the oc-
curence of higher precipitation rates the most.

At later lead times GraphCast forecasts underestimate the
occurence of higher precipitation rates the most. GFSv16
most common precipitation rates are the closest match to the
IMERG peak location.

VERTICAL COHERENCE CCE KELVIN WAVE

How well do the models represent the vertical structure of
the coupling to precipitation?

Observed coher-
ence in Kelvin
wave band.

GFSv16 at lead
time 24h and
120h.

GraphCast (GFS)
at lead time 24h
and 120h.

GraphCast (IFS)
at lead time 24h
and 120h.

GFSv16 initalizes with sufficient strength in the coherence between
precipitation and dynamics, but looses the coherence strength
quickly with lead time. GraphCast is able to keep the coherence
strength (maybe due to loss of small scale variability).

THERMODYNAMICS

GraphCast (GFS)

Lower tropospheric
buoyancy distribution
and precipitation rate
binned by buoyancy.

• Only small
changes in dis-
tribution and
precipitation rate
with lead time.

GraphCast (IFS)

Lower tropospheric
buoyancy distribution
and precipitation rate
binned by buoyancy.

• Shift toward
lower buoyancy
with lead time.

• Higher precipita-
tion rates occur
at lower buoy-
ancy at later lead
times.

Impact of the initial conditions lasts at least 10 days into the
forecast. Both GraphCast (GFS) and GraphCast (IFS) under-
estimate the buoyancy at high precipitation rates compared
to ERA5.
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