
● We used a model with microbial dynamics including High- and Low-Affinity Methanotrophs 
(HAM and LAM, respectively) (Zhuang et al., 2004; Oh et al. 2020) and optimized explicit 
methane oxidation processes for regions with 8 different vegetation types.

● Methane oxidation was higher in low soil moisture and high temperature conditions, and
was especially sensitive to temperature in boreal forests. While there are field studies 
showing that desert methane soil sink can be up to 7 Tg/yr, additional investigation is 
needed to improve our simulation for this region.

● Since HAM prefer low SOC and pH conditions and may not be dominant for all upland soils, 
we conducted sensitivity tests to change the HAM and LAM dominant regions based on 
different SOC and pH criteria (Fig. 4-5).

● Based on the SOC threshold, we made three methane soil sink scenarios: HAM dominant, 
LAM + HAM dominant, and LAM dominant scenarios.

● The preliminary results show that there are large uncertainties in process-based estimation 
(30-90 TgCH4yr-1) due to parameter optimization and governing microbial processes.

Introduction
Natural methane (CH4) oxidation by microbes in upland soils is the second largest sink in 
the global CH4 budget (Saunois et al. 2020), but its magnitude and long-term trend are 
uncertain (Conrad 2009; Belova et al. 2020). 
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● Different geographic sites with the same vegetation type show different performance.

● We pre-trained a deep neural network (GRU) on data from the process-based model.
● Evaluating the model on held-out simulated data (R2=0.91), high accuracies were achieved 

for well-represented vegetation types, but performed worse on some vegetation types.

Figure 3. (left) Summary of 8 vegetation types and references where optimized data are from, and (right) a spatial 
map of vegetation types.
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Preliminary results: machine learning pre-training

Figure 4. Model-data comparison between observation and Ganesan (left) and time-varying isoTEM (right) 
Figure 1. Benefits and limitations of process-based and machine-learning models.

Table 1. Global CH4 soil sink estimated by observation-
based meta-analyses and process-based models. Table 
modified from Murguia-Flores et al., 2018.

● The current estimate of the global 
CH4 soil sink based on meta-analysis, 
~30 TgCH4yr-1, has large uncertainty 
(Dutaur and Verchot 2007; Smith et 
al. 2000; Saunois et al. 2020).  

● The long-term trends in the global 
CH4 soil sink are highly uncertain as 
well. (Ni and Groffman 2018; Gatica
et al. 2020).

Previous studies estimated natural CH4 using either process-based or machine-learning 
approaches. Both methods have benefits and limitations.

● The synergy of process-based and machine-learning modeling, which combines the 
strengths of each approach, has gained attention in earth science fields and is called 
‘Hybrid modeling’ or ‘KGML’ (ElGhawi et al. 2022; Daw et al. 2017). 

● Despite the early success of the KGML approach (e.g., Liu et al. 2023), research in 
combining process-based and machine-learning models in terrestrial biogeochemical 
ecosystems is still at a nascent stage. 

● We are developing a novel KGML framework that synthesizes process-based and 
machine-learning models, as well as multi-source direct and indirect observations of soil 
CH4 oxidation, to quantify the spatial and temporal variability of the global CH4 soil sink.

Figure 5. Sensitivity test of process-based model using soil organic carbon (SOC) and soil pH criteria.

Figure 2. KGML 
framework for 
estimating 
global CH4 soil 
sink.

Criterion 1 (TgCH4 yr-1)
– max. SOC threshold

HAM only SOC 5% SOC 1% SOC 0.5% LAM only

90 90 73 60 33

Criterion 2 (TgCH4 yr-1)
– max. pH threshold

HAM only pH 6 pH 7 pH 8 LAM only
90 76 64 46 33

Figure 4. Global map of soil sink for (a) HAM-only, (b) HAM+LAM, and (c) LAM-only scenarios based on the SOC threshold in 
Fig. 5.
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Figure 6. Evaluating pre-trained model on held-out simulated data, for different vegetation types

Figure 7. Evaluating pre-trained model on held-out simulated data, for different Temperate Forest sites.
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