CHEMISTRY

Evaluating TEMPO NO₂ over the New York City Metropolitan Area during CUPiDS

¹Department of Chemistry, ²Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder, CO, ³Chemical Sciences Laboratory, NOAA/ESRL, Boulder, CO ^{*}Clara.Lietzke@colorado.edu; [†]Sunil.Baidar@noaa.gov; [#]Rainer.Volkamer@colorado.edu

CUPIDS-2022: Scientific Motivation

MacArthur Airport, Long Island, 18 Jul – 16 Aug 2023 (24 days in the field) 16 flight days 31 science flights (~100 science flight hours)

The Coastal Urban Plume Dynamics Study (CUPiDS, July-Aug 2022) deployed the NOAA TwinOtter as part of the larger AEROMMA study (Atmospheric Emissions and Reactions Observed from Megacities to Marine Areas) to address emerging research needs in urban air quality, marine emissions, climate feedbacks, and atmospheric interactions at the marine-urban interface.

Coastal urban areas face unique air quality challenges due to complex interactions between flows over land and water. CUPiDS flights were focused over the New York Metropolitan Area and Washington, DC (left, see flight tracks) with the following objectives: • Quantify reactive nitrogen emissions and O_3 production efficiency. • Inform future satellite capabilities of monitoring atmospheric composition

- over North America
- Study spatial structure and temporal evolution of diurnal coastal flows, pollution transport and mixing.

CUPiDS Instrument Payload

CUPiDS instruments	Measured Species
Scanning Doppler Lidar	Wind, variance (turbulence) and aerosol profiles Boundary layer height
MAX-DOAS	NO₂ , formaldehyde, glyoxal columns Profiles during missed approaches
NO _x CaRD	In-situ NO, NO₂ , NO _y , O ₃
Picarro	In-situ CO ₂ , CH ₄ , CO, H ₂ O
Radiometer	Surface albedo at 360, 477, 577, and 630 nm Surface temperature
Filter radiometer	Up and downwelling NO ₂ photolysis rate (jNO ₂)

Chemistry + Dynamics measurements Remote sensing + in-situ instruments

CU Airborne Multi-Axis DOAS

- Trace gas column observations
- Motion stabilized design: Forward, zenith to nadir scanning
- 2x CCD detectors: 320-465nm 415-525nm
- FOV: 550 m along track x 20 m cross track (at 4 km), 1-2 sec int. time
- Surface albedo sensor (4-channels: 360, 477, 630, 870 nm) in support of RTM calculations

NOAA Scanning Doppler lidar

- Compact motion stabilized design: Look up or down @ 1.5 micron
- Horizontal wind profiles: Scanning 30 deg/s, Beam rate 10 Hz, one sweep every 12s / 720 m along track resolution, 60 m vertical resolution,
- Vertical wind profiles: 10 Hz Beam rate, 6m along track resolution, 60m vertical resolution

NOAA NO_xCaRD

• Cavity Ring Down Spectroscopy

Clara Lietzke^{1,2,*}, Christopher Lee^{1,2}, Rebecca Mesburis^{1,2}, Catherine Silver^{1,2}, Mago Reza^{1,2}, Alan Brewer³, Steven Brown³, Brian McDonald³, Kristen Zuraski^{2,3}, Sunil Baidar^{3,†}, and Rainer Volkamer^{1,2,#}

column fitting (336.5–359 nm) using three sources of O_2 - O_2 cross-section data during RF23 (open circles) and RF25 (closed circles): (1) Hermans et al. (1999); (2) Thalman and Volkamer (2013); (3) Finkenzeller and Volkamer (2022); the latter leads to systematically lower HCHO slant columns.

Acknowledgements:

Financial support for this work from NOAA's Climate Program Office (AC⁴ program award # NA21OAR4310139) is gratefully acknowledged. The results are meant to be informative, and no conclusions should be inferred from these early comparisons with unvalidated TEMPO data products. The opinions shown are those of the authors. The TEMPO data products are currently pending the provisional validation status according to the validation plan.

