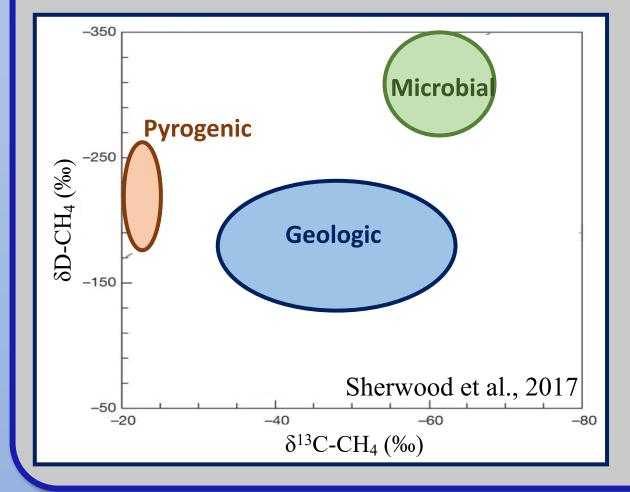


Ben Riddell-Young¹, John Miller², Sylvia Michel³, Pieter Tans³, Lindsay Lan^{1,2}, Heiko Moossen⁴


1) Introduction

- mixing ratio of ➤ The atmospheric methane (CH₄) continues to rapidly increase.
- > Atmospheric δ^{13} C-CH₄ and $\delta D-CH_4$ are sensitive to distinguishable isotopically sink emissions and fractionation and can shed light on the CH₄ budget.

> Analyses of δ^{13} C-CH₄ measurements point to a microbial driver of recent CH₄ growth.

Research Question: Can measurements of δD -CH₄ improve constraints on the global CH₄ budget?

2) New δD -CH₄ datasets

1. INSTAAR Stable Isotope Laboratory: 3 -70

- ≥ 2005 2009, 14 measurement sites.
- \geq ~3200 measurements permits Data Extension and Integration.

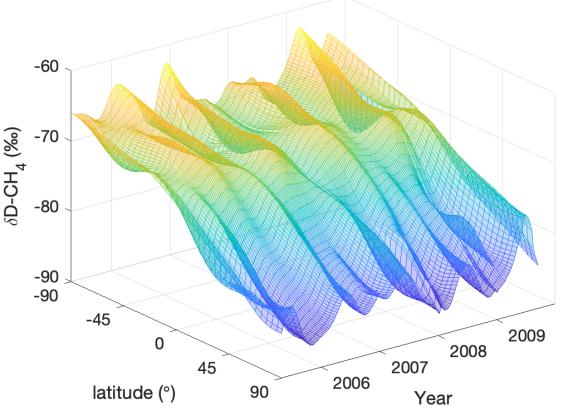
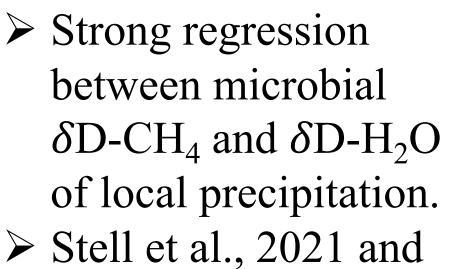


Figure 1. "Carpet diagram" of atmospheric *SD-CH*₄. The result of the Data Extension and Integration analysis of for the 2005 – 2009 INSTAAR δ D-CH₄ dataset are plotted as a function of time (x-axis), and latitude (z-axis). The δD -CH₄ is denoted by the color and y-axis.

2. Max Plank Institute for Biogeochemistry:

 \geq 2011 – Present, 11 measurement sites.


 $\geq \sim 3100$ sample, Data Extension and Integration soon.

References

Basu, Sourish, et al. "Estimating emissions of methane consistent with atmospheric measurements of methane and δ 13 C of methane." Atmospheric Chemistry and Physics Discussions 2022 (2022): 1-38 ordan, Armin; Moossen, Heiko; Rothe, Michael; Brand, Willi; Heimann, Martin; Zaehle, Sönke; Rödenbeck, Christian, 2024, "Atmospheric flask sampling program of MPI-BGC, Schuldt, K., Thoning, K., Michel, S. E., Clark, R., Miller, J. B., Andrews, A., Sherwood, O., Etiope, G., Crippa, M., Liu, L., Zhuang, Q., Randerson, J., van der Werf, G., Aalto, T., Amendola, S., ... Xueref-Remy, I. (2023). CarbonTracker CH4 2023. NOAA Global Monitoring Laboratory. Rockmann, T. "Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning." (2013). Sherwood, Owen A., et al. "Global inventory of gas geochemistry data from fossil fuel, microbial and burning sources, version 2017." Earth System Science Data 9.2 (2017): 639-656. Stell, Angharad C., et al. "The impact of spatially varying wetland source signatures on the atmospheric variability of δ D-CH4." Philosophical Transactions of the Royal Society A Thoning, K.W., P.P. Tans, and W.D. Komhyr, 1989, Atmospheric carbon dioxide at Mauna Loa Observatory, 2. Analysis of the NOAA/GMCC data, 1974 1985., J. Geophys. Res., 94,

New insights into the global methane budget from measurements of atmospheric δD -CH₄

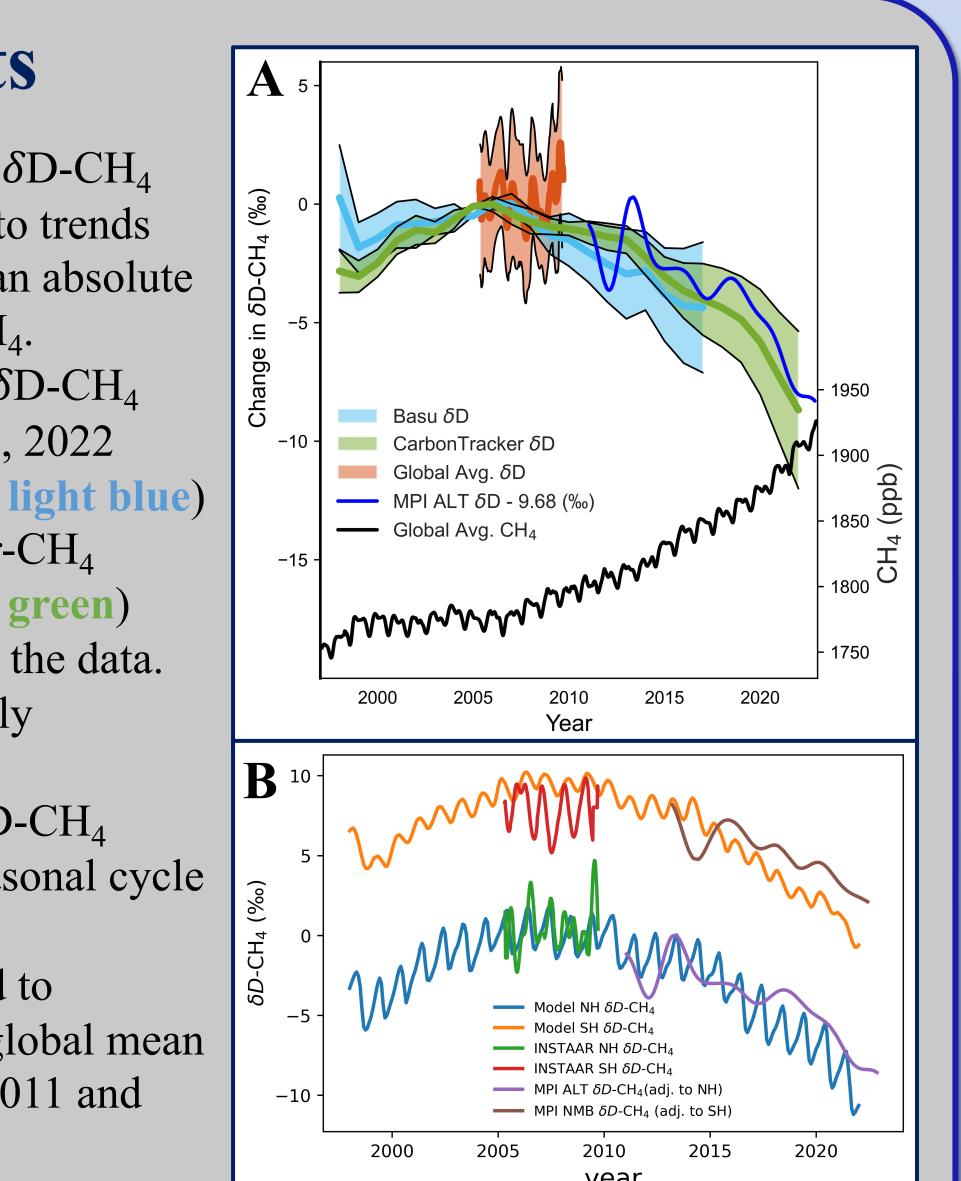
- ¹ Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA. ² Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA. ³ Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA.
- ⁴ Max Planck Institute for Biogeochemistry, Jena, Germany.

- IsoScapes mean annual δD -H₂O of precipitation.
- Country-specific mean oil / natural gas and coal (ONG) δD - CH_4 .
- Flux-weighted to determine average fossil fuel δD -CH₄ using EIA data.
- \succ Very limited data on pyrogenic δD -CH₄. Strong regression between pyrogenic δD -H₂ and local δD -H₂O (Rockmann et al., 2013).
- \blacktriangleright Regression appears to hold for δD -CH₄ (see diamonds).

- Gridded emission scenarios from CarbonTracker-CH₄ and Basu et al., 2022 (Fossil, microbial,
- Calculated flux weighted
- hemispheric source signatures. \blacktriangleright Ran forward from 1997 – 2022 to calculate expected δD -CH₄.

4) **Results**

- \succ Poor constraints on δ D-CH₄ limit interpretation to trends over time, rather than absolute atmospheric δD -CH₄.
- \succ Expected trends in δ D-CH₄ based on Basu et al., 2022 emissions (Fig. 2A: light blue) and CartbonTracker-CH₄ emissions (Fig. 2A: green) agree with trends in the data.
- \blacktriangleright The model accurately reproduces the interhemispheric δD -CH₄ gradient and the seasonal cycle (Fig 2B).
- > More data is needed to determine the true global mean annual trend from 2011 and on.


Figure 2. Results of the box model forward analysis. A) Expected and observed trends in global mean annual δD-CH₄. The global mean δD -CH₄ and uncertainty from the INSTAAR dataset (Orange line and shading), the de-seasonalized MPI ALT record (Latitude = 82.45) °N), adjusted to the global mean using the average latitudinal gradient from the INSTAAR dataset (blue line). Forward box modeled global average annual mean δ D-CH₄ generated using gridded emission fields from Basu et al., 2022 (blue line and shading) and the latest version of CarbonTracker CH₄ (green line and shading). Uncertainty was determined from existing uncertainties in the global mean source signature (Sherwood et al., 2017). The global mean CH_4 record is plotted in black for reference. **B**) Expected and observed trends in hemispheric mean δD -CH₄. Forward box-modeled NH (Blue) and SH (orange) mean δD -CH₄ generated using the CarbonTracker CH₄ emission fields. Mean NH (green) and SH (red) δD-CH₄ of the INSTAAR dataset. The de-seasonalized MPI ALT record (Latitude = 82.45 °N) and MPI NMB record (Latitude = -23.46 °S), adjusted to the NH amd SH means, respectively, using the average latitudinal gradient from the INSTAAR dataset (purple)

2022.

a. Robust seasonal, latitudinal and temporal signals.

5) Key Findings

1. We present the first global dataset of δD -CH₄ and compile several datasets to create a novel time series from 2005 to

2. Box model experiments suggest that current δ^{13} C-CH₄derived estimates of the global CH₄ budget are roughly consistent with δ D-CH₄ observations.

3. Better constraints on the δD -CH₄ of emissions and fractionation during sink processes are needed to improve the use of δD -CH₄ as a tracer of the global CH₄ budget.

