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Why Is It Important?
Heavy precipitation can have major impacts on infrastructure, agriculture, and 
society, and different regions have different criteria for heavy precipitation. This 
therefore necessitates accurate background knowledge and forecasting of the 
weather regimes that can cause heavy precipitation for a given region, as well as 
common regimes that precede and follow them that can aid in forecasting. 
However, precipitation and other meteorological datasets can be large, making 
identification of important features difficult without the use of machine learning. 
In particular, self-organizing maps (SOMs) can train on large datasets and parse 
out the most common and most distinct patterns (Figure 1).

This investigation of precipitation regimes involves training SOMs on Multi-Radar 
Multi-Sensor (MRMS) observed precipitation data from January 2021 to 
December 2023. Six SOMs are trained on MRMS 1-h and 24-h quantitative 
precipitation estimate (QPE) data, with each SOM focused on one of six regions 
within CONUS to parse out storm types affecting each region. SOMs are able to 
cluster regimes with heavier precipitation, allowing investigation of where the 
heaviest precipitation falls for each region on average, when it is most likely to 
occur, how long it typically persists before transitioning to another regime, and 
regime-based numerical weather prediction (NWP) model forecast errors.

Spatial and Seasonal Patterns 
● Several nodes represent heavier precipitation (Figure 2)
● Nodes 2, 3, 4, 11, 12, and 13 indicate average 1-hr quantitative precipitation 

estimate (QPE) > 1 mm and average 24-hr QPE > 25 mm somewhere in 
eastern Gulf of Mexico, Florida, and Caribbean (nodes 2, 3, and 4), as well 
as central Mexico (nodes 11, 12, and 13)

● Nodes 9, 10, 15, 17, and 19–25 represent more moderate-heavy 1-h and 
24-h QPE, primarily over southeastern states

● The remaining nodes represent drier regimes with lighter mean QPE and 
lower node-based standard deviations of QPE

● Nodes with greatest QPE are generally the least common, but they tend to 
occur more frequently in summer and autumn months (Figure 3)

● The moderate-heavy QPE nodes are more common in spring-autumn
● Drier nodes can occur all year

○ Node 6 in particular has little to no QPE anywhere and is the most 
common node, occurring most often in winter months

Data and Methods 
● Multi-Radar Multi-Sensor (MRMS; Zhang et al. 2016)

○ 1-hr & 24-h Quantitative Precipitation Estimate (QPE)
○ 6 sub-CONUS domains (here the focus is on South-Central)
○ Jan 2021 - Dec 2023
○ Data grid thinned by retaining every 10th grid point (10-km resolution) 

during training to save computational cost
● MiniSom (Vettigli 2018)

○ Hyperparameters (Table 1) resulted in lowest quantization and 
topographic errors

Future Work
● Filter data (ARI threshold) for more focus on regimes with precipitation
● Continue investigating other sub-CONUS domains
● Cluster NWP QPF using MRMS-trained SOM nodes and compare with 

MRMS to assess model forecast skill under difference precipitation regimes
● Add NWP model error as a training variable to further assess regime-based 

model performance

Figure 3. Number of hours within a given season represented by each SOM 
node. 

Figure 1. A diagram of  how SOMs work using the example of identifying the most 
representative colors from a dataset of RGB values.  (From Naegele et al. 2024)

Figure 2. Prominent (top) 1-h and (bottom) 24-h QPE patterns for south-central 
CONUS from January 2021 to December 2023 after SOM training.
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Grid Size Learning Rate Sigma Epochs

5×5 0.25 1.75 500

Table 1. MiniSom Hyperparameters

Node Transitions 
● Focusing on node 3 (heavier average precipitation in south Florida) and 

calculating the probability of transitioning to another node over time
● Node 3 persists for about 6 hours before transitioning (Figure 4)
● The most common nodes node 3 transitions to are nodes 6, 8, and 19, 

followed by node 16 after 72–96 hours
○ Nodes 6, 8, and 16 represent nodes with little to no average 

precipitation, and thus a weakening of the storms present in node 3
○ Node 19 indicates a northward progression of mean precipitation

Figure 4. Probability (in %) of node 3 persisting or transitioning to another node 
after a given number of hours.
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