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1) Replay run setup
Increment computed as difference between a free 
forecast run and ERA5. Model is re-run with the 
increment applied. 

Increment updated every 6hours.

Temperature, moisture zonal and meridional wind fields 
are the only variables that are nudged.

3) Why Entraining Plume Buoyancy?2) Entraining Plume Buoyancy, B_DIB

BIG PICTURE GOAL
Systematically understand sources of errors and bias in model representation of processes associated with variability of rainfall in the tropics, particularly those related to thermodynamic coupling between convection and the large scale environment.

WHY IT MATTERS
 Better representation of tropical convection in models is not just important for improving weather and climate prediction in the tropics, but tropical convection is also an important source of S2S predictability and forecast errors outside the tropics.

 
DATA

 “Replay” runs from NOAA Unified Forecast System (UFS)1 coupled prototype model HR1 (100km resolution) – errors (as compared to ERA5) in temperature, moisture, and horizontal winds in the model are being continuously offset through an increment forcing. 
ERA5 and IMERG precipitation used for comparison.  Three years of daily averaged data interpolated to a 2.5o x 2.5o grid from data 2010-12.

AIM FOR THIS POSTER
 Compare evolution of precipitation and large scale thermodynamic fields in UFS Replay with ERA5 and IMERG precipitation.

FUTURE WORK
Apply diagnostics to a suite of UFS simulations include long term climate runs, and sub seasonal reforecast simulations to understand how these errors propagate in the model across different timescales. 

4) Some possible connections between thermodynamic profiles, model replay 
increments and plume buoyancy differences

Schematic from Dias et al. 2021

• Metric to estimate low level convective instability for a rising plume 
that undergoes mixing/entrainment. Calculated from the large scale 
temperature and moisture profiles

• Acts as a state function that characterizes the different types of 
thermodynamic environment in terms of their stability to 
convection.
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• Plume virtual temperature profile computed based on two mixing 
profiles
• No mixing à B_NOMIX
• Idealized deep inflow mixing profile à B_DIB

• Impact of mixing with environment on plume buoyancy given by

B_MODENTRAIN = B_DIB – B_NOMIX
Schematic from Wolding et al. 2024

B_DIB = B_NOMIX + B_MODENTRAIN

• In the tropics, large scale precipitation does not 
covary with B_NOMIX. Updrafts undergo strong 
mixing and B_DIB is a better correlated with 
precipitation.

• Generally, plume entrains relatively drier air which 
makes the plume more stable.

• There is a competition between unstable B_NOMIX 
and the stabilizing B_MODENTRAIN.

• As a result, most unstable environments (max B_DIB) 
are associated with most moist environments and 
not most unstable B_NOMIX.

Increased stability in model seems to be primarily related to increased stability through 
B_NOMIX.

Entrainment of dry air has a smaller stabilizing effect on the plume in the model compared 
to ERA5. Since the model tends to have a dry bias at lower levels, smaller B_MODENTRAIN 
could be related to smaller B_NOMIX. 

Increased stability in B_NOMIX can be related to different processes
• Dry bias in boundary layer reduces virtual temperature of plume leading to more 

stable B_NOMIX
• While a warm bias in boundary layer should make the model more unstable, 

combined with the dry bias it could lead to decrease in saturation which makes 
B_NOMIX more stable.
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Model strongly underestimates precipitation and upper level 
divergence associated with MCS’s and overestimates 

precipitation associated with congestus despite nudging1. 

(Fig. from Wolding et al. 2024)

(Fig. from Wolding et al. 2024)
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Precipitation biases are collocated with a cold and moist bias at 
upper levels, and warm and dry bias at lower levels. 
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Model tends to drift towards a more stable state4. Minor 
differences in temperature and moisture profiles can lead to 
significant differences in vertically integrated buoyancy2,3,4.
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