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Motivation and Goals Methodology Evaluation
= 10m resolution optical data via differenced Normalized Burn Ratio (ANBR) enables wildfire = For model training, 8 fires ( 250 images) were used - 6 fires ( 200 images) for training and 2
image delineation fires ( 50 images) for validation. Cross-entropy loss and Intersection over Union (loU) were used to evaluate the model.
= dNBR generates a high number of false positives when affected by weather conditions = Each image was converted into n equal sized patches of size (256,256) using a patchify layer
= Synthetic Aperture Radar (SAR) is unaffected by weather and yields highly accurate results for as seen in Figure 3
pixel-level burned/unburned classification, though relies on significant processing = The training was distributed across 3 NVIDIA GeForce GTX 1080 Ti using a batch size of 3 | - No. of classes
requirements = A pre-trained model, DeeplLabV3+, was used by customizing both the input layer to accept a ‘ '
= Successful integration of dNBR and SAR using deep learning would address the downsides single band input, and the output layer to produce a pixel-wise class prediction for burned or H (p, Q) — - Z p(X) 10g q(X)
associated with both data sources [2] unburned area

= To generate a baseline for comparison, a deep learning model is first trained on the optical
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{ mte12 | > —> 1x1 Conv Cross entropy loss and loU together address accuracy and correct overlap of predictions, i.e.,
Sentingk2 Landsal-8.9 % : it emphasises correct predictions being made in correct locations within the image.
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“Upsample = Train the model using dice coefficient loss function for improved boundary mapping of
e dNBR = NBR 5 irs - NBR oot ire '-;;t'ﬂgl _ by4 J‘ N burned/unburned regions//
- l 3 . Prediction » With evidence of model suitability, re-train using SAR change detection as the segmentation
Fioure 2. Creating a dataset Y / | | : mask (ground truth), paving way for a more direct baseline for SAR-optical integration
1x1 Conv. —» —» Concat —» —n-{3x3 Conv} Upairzple} = Fuse SAR and optical data into a single data structure for combined model training
= A dataset was created using surface reflectance values from open-source satellite APIs to _/,
create dNBR single-band images References
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