Vertical separation and meridional transport of the Hunga water vapor and aerosol plumes
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Overview Transport and diffusion of the H,0 and aerosol plumes
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in boreal spring 2023. The balloon-based vertical profiles, spanning from the surface to ~ 28 km a.s.l. " " ‘ = — - :
can also resolve the vertical separation of water vapor and aerosol plumes. The buoyancy of air o
masses, radiative heating, and in the case of particles, gravitational settling, as well as large scale

circulation patterns, can influence the altitude of volcanic water vapor and aerosol plumes. In addition, in

situ measurements also provide information on the removal of stratospheric water vapor through

dehydration in the polar vortex and stratospheric aerosol through gravitational settling, following the e B i e :
Hunga eruption. The observed meridional transport and removal pathways may be directly compared to 00147 1si6:3 1582 T e 1 15 1
those in global climate models. " s
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Science Questions Figure 4. Vertical profiles of H,0 and aerosol effective radius (m3/m?) with potential temperature. H,0 is transported along isentropes within a few
% ' s months. Dilution in the NH results in smaller H,0 enhancements and lower aerosol effective radii in the NH. Measurements binned to 0.1 km altitude. Figure 7. NOAA GFSQ (0.25 degree) Hysplit archive trajectories, dating back from time and location of
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SAGE Ill monthly coverage Figure 5. Timeseries of zonal mean of stratospheric H,0 (above 380 K) in the SH and NH tropics (5-25 N and S) and midlatitudes (25-50 N and S) from MLS V5.
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