HIC AND ATMOSPHER Fire Aerosol Predictions and its Impact on Subseasonal to Seasonal (S2S) forecasts in NOAA's Global Aerosol Forecast Systems NOAA NATIONAL Li (Kate) Zhang^{1,2}, Georg A. Grell², Partha S. Bhattacharjee³, Shan Sun², Anders A. Jensen², Jordan Schnell¹.², Haiqin Li¹.², Yunyao Li⁴, Barry Baker⁵, Judy Henderson². Ravan Ahmadov². Ligia Bernardet². Daniel Tong⁵. Ziheng Sun⁵. Li Pan³. Bing Fu⁶. Raffaele Montuoro⁶. Jian He^{1,7}. Rebecca L ... Schwantes⁷, Siyuan Wang^{1,7}, Gregory J. Frost⁷, Brian McDonald⁷, Fanglin Yang⁶, Ivanka Stainer⁶

COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES

(kate.zhang@noaa.gov)

¹CIRES, University of Colorado, Boulder, CO, US; ²Global Systems Laboratory, NOAA, Boulder, CO, US; ³SAIC/Lynker at NCEP/NWS/EMC/NOAA, College Park, MD, US; ⁴George Mason University, Fairfax, VA, US; ⁵Air Resources Laboratory, NOAA, College Park, MD, US; ⁶Environmental Modeling Center, NCEP/NWS/NOAA, College Park, MD, US; 7Chemical Sciences Laboratory, NOAA, Boulder, CO, US;

Introduction

- UFS-Aerosols: the second-generation of UFS coupled aerosol system has been collaboratively developed by NOAA and NASA since 2021, which embeds NASA's 2nd-generation GOCART model in a National Unified Operational Prediction Capability (NUOPC) infrastructure. It is planned to be implemented into the Global Ensemble Forecast System (GEFS) v13.0 for ensemble prototype 5 (EP5) experiments early this
- UFS-Chem: an innovative community model of chemistry online coupled with UFS, which is a wide collaboration between NOAA Oceanic and Atmospheric Research (OAR) laboratories and NCAR. The aerosol component based on the current operational GEFS-Aerosols v12.3, has been implemented into UFS Chem utilizing the Common Community Physics Package (CCPP) infrastructure with updates to wet

NOAA's Global Aerosol/Chemistry Forecast Systems

Operational		Sep. 2	020 Jan. 2023 v12.3	Se	p. 1 EP	CCPP version of GEI	FS-Aer	rosols
uuto		Ţ		۲.,	-			
	NGACv2		GEFS-Aerosols GEFS v12 & v12.3			UFS-Aerosols GEFS v13		UFS-Chem
ATM model	NEMS GSM		FV3			FV3/UFS		FV3/UFS
Physics	GFS v2015		GFSv15			GFSv17		GFSv17
Horizontal Res.	~100km		~25km			~25km		~25km
Vertical Res.	64 layers		65 layers			127 layers		127 layers
Infrastructure	ESMF		NUOPC			NUOPC		CCPP
Aerosol/Chem	1st NASA GOCART		GSL GOCART			2nd NASA GOCART	г	GSL GOCART/AM4
Components			(based on WRF-Chem)			Ensemble members		phase schemes
	Atmospheric model only, direct radiative feedback is coming from climatological aerosol reanalysis data				S2S: Fully coupled with ocean, sea ice and wave, online aerosol prediction for direct radiative feedback			
					Г	Global aeros	ol assir	nilation (DA)

Comparisons between UFS-Aerosols and UFS-Chem

	UFS-Aerosols)	UFS-Chem	
Aerosol emissions from nature source (e.g. dust and sea salt)	NASA sea salt scheme, Fengsha dust	Same	NASA sea salt scheme, Fengsha dust	
Aerosol emission from Anthropogenic emission and Fires emission	CEDS_2019 version (aviation from HTAP etc., GBBEPx or QFED	Similar	CEDS_2019 version, GBBEPx	
Fire Plume-rise module	None	different	Online plume-rise module based on FRP and Met. fields	
Aerosol dry deposition and settling	From NASA_GOCART	Similar	Based on WRF-Chem GOCART	
Aerosol large Wet removal	From NASA_GOCART	Different	Inline calculation in Thompson MP scheme	
Aerosol convective wet scavenging and convective transport	FV3GFSv17 SAS scheme	Same	FV3GFSv17 SAS scheme	
Simple chemical reactions (sulfate, OC, BC)	From NASA_GOCART	Similar	Based on WRF-Chem GOCART	
AOD computation based on NASA look-up table	Online calculation (capability of aerosol radiative feedback in GFS)	Same	Online calculation (capability of aerosol radiative feedback in GFS)	
Other aerosol or gas-phase chemistry schemes	Option to add nitrate, ammonium and brown carbon	- Different	Complex aerosol and gas-phase chemistry schemes (e.g. AM4 etc.)	

Application of UFS-Aerosols in S2S Predictions

- week for 35-day forecast · 10 ensemble members with perturbations applied to Met. Fields, aerosol direct radiative feedback is from online aerosol model of NASA GOCART.
- EP4a: QFED fire emission, CEDS 2019 anthropogenic emission, FENGSHA dust scheme (2022). EP4b: Scaled QFED fire emission and updated FENGSHA dust scheme (Sep. 2023)

Inline implementation of large-scale wet removal within **Thompson MP for GSL-GOCART aerosols**

AOD biases with respective to MERRA-2 and MODIS, GBBEPx v003, August 2016 Offline wet removal scheme in GSL-GOCART module

With identical model configurations, the AOD biases manifest in two different directions. The cycling experiment demonstrates underprediction across all aerosol AOD, whereas the S2S fully coupled experiment exhibits overprediction over extensive regions (such as sea salt AOD). This discrepancy is attributed to the offline wet removal scheme (from WRF-Chem GOCART).

Inline wet removal scheme in Thompson MF

After implementing the inline large-scale wet removal calculation into Thompson MP scheme for predicted aerosols, the AOD biases shows greater consistency between the cycling experiment and the S2S fully coupled experiment compared to the offline scheme, particularly noticeable for sea salt AOD

ng the online predicted aerosols (GSL-GOCART scheme) into the Thompson MF aerosol aware scheme to for aerosol indirect feedback is currently underway.

BONA: Boreal North America; WUS: Western US; SEUS: Southeast US; SHSA: Southern Hemisphere South America: NHAF: Northern Hemisphere Africa & Middle East; SHAF: South Hemisphere Africa; EURO: Europe; AUST: Australia and New Zealand: BOAS: Boreal Asia: EQAS: Equatorial Asia: CEAS: Central and Southeast Asia: CEAM: Central America GLOB: globa

OC AOD biases with respective to MERRA-2. August 2016 **UFS-Chem** GBBEPx v003

-0.2 -0.15 -0.1 -0.05 -0.02 0.02 0.05 0.1 0.15

Summary

The development of UFS-Chem model has been launched: an innovative community model that incorporates chemistry online coupled with LIES. Its initial development involved a collaboration between NOAA OAR laboratories and NCAR, utilizing the CCPP infrastructure to connect the gas and aerosol chemistry modules with the rest of the model

Recognizing the uncertainties associated with fire emission, a key factor impacting the model performance, we have initiated further studies to improve fire emission for S2S predictions. This effort will benefit both the operational implementation of GEFSv13 and the development of UFS-Chem.