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Context: How do early career researchers learn best practices in applying data science methods to their research? Does tinkering with real data and

applications enhance learning and engagement??

Since 2018, CIRES researchers (a professor, postdocs Elizabeth/Eleanor and graduate students

Vineel/Gina) have developed self-guided application laboratories in jupyter notebooks/python as a core part of a graduate-level data science course
offered six times since 2018 (ATOC5860, Figure 1+2). These classroom-tested labs illustrate best practices by applying data science methods to classic
datasets in atmospheric and oceanic sciences and beyond. Select examples below - All on github: https://github.com/jenkayco/ATOC5860 Spring2024
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Figure 2. Typical ATOC5860 Schedule
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Figure 4. Eigenfaces, i.e., the structures that
explain the most variance in sample
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Key Result: Hair, Glasses, Eyebrows, Noses explain a lot of variance. Also, eigenfaces are creepy.
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Figure 5. Boulder, CO 2016-2021 hourly surface temperature in the time (left) and spectral (right) domains

Key Result: Power at the annual cycle exceeds the red noise null hypothesis for some but not all variables.
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Figure 6. Boulder, CO
data-based ”seasons”
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Key Result: Date-based and Data-based definition of the seasons differ substantially!

Self Organizing Maps
What atmospheric circulation patterns occur?
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Key Result: Large variety of sea level pressure
(SLP) anomaly patterns can be found
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Figure 7. Confusion matrices for random forest (left), and neural
network (right) on the “test” data.
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Key Result: Comfortingly (!), relative humidity is the most
important feature for predicting rain for all methods.



