Teaching Graduate Level Data Science for Atmospheric and Oceanic Sciences

Jen Kay^{1,2}, Elizabeth Maroon³, Eleanor Middlemas⁴, Gina Josef^{1,2}, Vineel Yettella⁵

¹Dept. Atmospheric and Oceanic Sciences (ATOC), ²CIRES, University of Colorado Boulder

³Dept. of Atmospheric and Oceanic Sciences, University of Wisconsin ⁴PricewaterhouseCoopers, ⁵Apple

Context: How do early career researchers learn best practices in applying data science methods to their research? Does tinkering with real data and applications enhance learning and engagement?? Since 2018, CIRES researchers (a professor, postdocs Elizabeth/Eleanor and graduate students Vineel/Gina) have developed self-guided application laboratories in jupyter notebooks/python as a core part of a graduate-level data science course offered six times since 2018 (ATOC5860, Figure 1+2). These classroom-tested labs illustrate best practices by applying data science methods to classic datasets in atmospheric and oceanic sciences and beyond. Select examples below - All on github: https://github.com/jenkayco/ATOC5860 Spring2024

Empirical Orthogonal **Functions (EOF)** What structures explain the most variance in a database of faces?

Spectral Analysis Which frequencies have statistically significant power?

Figure 3. All faces in the database (left), Average face (right). "Look at your data!

Time (Hours)

Key Result: Hair, Glasses, Eyebrows, Noses explain a lot of variance. Also, eigenfaces are creepy.

Figure 4. Eigenfaces, i.e., the structures that explain the most variance in sample

Figure 1. Students in ATOC5860 on Zoom (Fall 2020) and working together on application labs in class (Spring 2023)

_	Tuesday	Inursday					
January	January 10 1. Introductions/Basic statistics/Bayes Theorem (Barnes 1.1-1.2) Complete pre- class survey, Set up Python and Github, HW#1 assigned	January 18 2. Statistical Significance Testing /Hypothesis testing/Resampling/Monte Carlo (Barnes 1.3-1.5)					
	January 23 Application LAB #1 Basic Statistics and Hypothesis testing	January 25 Applications LAB #1 cont.					
	January 30 3. Compositing/Other distributions/Non- parametric tests (Barnes 1.6-1.8)	February 1 4. Regression (Barnes 2.1-2.2) HW#1 due HW#2 assigned					
	February 6 5. Autocorrelation/Autoregressive model/Sample Size (Barnes 2.3-2.4)	February 8 Applications LAB #2 Regression/Autocorrelation					
	February 13 Applications LAB #2 cont.	February 15 6. EOFs via Eigenanalysis/SVD (Barnes 3.1.1-3.1.4) HW#2 due, HW#3 assigned					
ary.	February 20 7. EOFs with actual data (Barnes 3.1.5)	February 22 No class					
Febru	February 27 Applications LAB #3 – EOFs	February 29 Applications LAB #3 cont.					
	March 5 8. Harmonic analysis; power spectra (Barnes 4.1.1-4.1.2)	March 7 9. Fourier Transforms/Significance testing of spectral peaks/Data windows (Barnes 4.1.3-4.1.5)					
	March 12 10. Convolution Theorem, Response function for various windows, Applying overlaps of the windows (Barnes 4.1.5)	March 14 Applications LAB #4 – Timeseries analysis/Power spectra					
larch	March 19 Applications LAB #4 Continued	March 21 HOMEWORK PRESENTATIONS: #2, #3 HW#4 due Friday March 22					
2	SPRING BREA	K - NO CLASS					
April/May	April 2 11. Filtering (Barnes 4.1.6; Hartmann 7) HW#5 assigned	April 4 12 (short). Application Lab #5					
	April 9 13. Machine Learning Overview	April 11 Machine learning with Dr. Jake Gristey NOAA/LASP (guest lecture) HWI5 due, HWI6 assigned					
	April 16 14. (short) Applications LAB #6: Machine Learning - Clustering	April 18 15. (short) Continue AL #6 – Self Organizing Maps Application Lab #6 links due today					
	April 23 No class	April 25 Supervised Machine Learning HW #6 due					
	April 30 HOMEWORK PRESENTATIONS: #4, #5, #6	May 2 Interpretable machine learning with Dr. Kirsten Mayer NCAR (guest lecture)					

Figure 2. Typical ATOC5860 Schedule

K-means clustering								
What happens when we								
define the seasons based on								
data, instead of the date?								

Key Result: Power at the a

nnu	al cycle exceeds the red	noise	null hy	/pot	hesis	for so	ome	e but n	ot all vari	ables.
[pres_mb	tdry_degC	rh_percent	wdir	wspd_m_per_s	wspdmax_m_per_s	raina_event_n
duster4	573 S. 5858 Western Mar 2007.		cluster1	809.1	0.1	70.8	146.9	2.4	4.4	
duster3 -		• 2016	cluster2	807.5	10.5	26.6	267.9	7.5	14.5	
		 2017 2018 	cluster3	808.9	11.9	28.9	234.2	2.7	5.5	
	WAR PACEDO CARRA	• 2019	cluster4	814.7	18.7	35.7	79.8	2.0	4.2	1
duster2 -		• 2020								
			Figur	e 6.	Bould	er, CO	201	16-2021	clustering	to defi
duster1 -			data-	base	d "sea	sons"	: wł	nen they	occur (lef	t), clust
	0 50 100 150 200 250 300 350		centr	oids	(above	e)				

. . . .

Key Result: Date-based and Data-based definition of the seasons differ substantially!

Figure 5. Boulder, CO 2016-2021 hourly surface temperature in the time (left) and spectral (right) domains

Key Result: Large variety of sea level pressure (SLP) anomaly patterns can be found

Supervised machine learning

Predict rain using surface meteorological station observations

Figure 7. Confusion matrices for random forest (left), and neural network (right) on the "test" data.

Key Result: Comfortingly (!), relative humidity is the most important feature for predicting rain for all methods.