Validation of Machine Learning Models for
Classification of Solar Wind

Lois J. Landwer'?, Hazel Bain'?, Mark Miesch 2, George Millward 2 Enrico Camporeale 2 Eric Adamson 2
ICooperative Institute for Research in Environmental Sciences (CIRES)
2NOAA Space Weather Prediction Center

TSL RGN e S
Abstract Bl B L
B s - B, S —N

Space Weather Prediction Center(SWPC) in NOAA plans to

-, . : . . , ’ : . .
operationalize machine learning(ML) model for use with the Space el oL ifefel[e]a! Of Solar Wind with Machine Learning Solar wind classification using ACE data
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continuous real—time data to Earth. It is scheduled for launch in 2025. \c%mlna.
We validated a Gaussian process ML model developed by steamer  ghamet
Camporeale et al. (2017) using DSCOVR and ACE data. SWFO-L1 will Xu & Borovsky (2015) described a categorization scheme for that divided the solar
replace ACE’s and DSCOVR’s monitoring of solar wind, energetic wind into four components
particles, and the interplanetary magnetic field. This ML model is a
four—category classification algorithm for the solar wind, previously 4 Ejecta
adopted in Xu and Borovsky (2015): ejecta, coronal hole origin Q Streamer—belt-origin plasma = .
plasma, streamer belt origin plasma, and sector reversal origin plasma. , s |
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The algorithm is trained and tested on a labeled portion of the OMNI e R
data set identifying the wind regime based on several parameters, 4 Coronal-hole-origin plasma | . | . | .
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Alfven speed, as well as non—-in—situ data on sunspot number and Attribute symbol  ® |n 2017, Camporeale et al.
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SWFO L-I (Space Weather Follow On Lagrange 1) - . g multiple parameters.
emperature ratio Texp/Tp
= This ML model is a four—category classification algorithm for the
The importance of understanding the near—Earth space environment solar wind, previously adopted in Xu and Borovsky (2015).
cannot be overstated, as it impacts a wide range of users. The
absence of accurate space weather predictions and forecasts results
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DSCOVR, have a limited remaining lifespan, it is important for NOAA Iy el o el D e e 2021
N ___ lomiow: GP > 0.5 categorization S . Category 10% 15% 20% 25%
to plan for follow-on missions for solar, heliospheric, and other e S— S oy ma e ICME=Richardsonand Cane
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observations to continue providing space weather information to its e oo Shock= CfA Interplanetary Shock Database - Wind
users. The SWFO-L1 observatory is scheduled to launch in 2025. T T payotaos
Training and Testing Data Using OMNI Data from 1995 to 2017
[FN (False Negative)} [ FP (False Positive) ]
Confusion Matrix for the Case of 20% Training Set, When Only Probabilities Larger Than 50%
Are Considered
Observed category
Prediction Ejecta Coronal hole Sector reversal Streamer belt
Ejecta 97.9 0 0.8 0.6
Coronal hole origin 0.2 100 0.1 0.1
Sector reversal origin 1.0 0.0 98.5 0.3
Streamer belt origin 1.0 0.0 0.5 99.0
Note. Probabilities are conditioned on the observed category.
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Compact  Coronagraphs  (CCORs): - Solg A% classification using DSCOVR data

Developed by the Naval Research Lab

Solar wind Classification using DSCOVR data(2017)
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(NRL), the telescope will be used to

observe the solar corona and detect

coronal mass ejections (CMEs),CIRs

g , E. Camporeale, A. Care & J. E. Borovsky 2017, "Classification of Solar Wind
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