

Overview

Simulating a volcanic eruption's impact on stratospheric aerosol presumes knowledge of its injection height and mass, plume composition, location, and atmospheric state variables. In situ measurements are key to validating these assumptions. Using measurements from the Tonga Rapid Response Experiment (TR²Ex) and subsequent Balloon Baseline Stratospheric Aerosol Profiles (B²SAP) soundings, we track the evolution of the aerosol and water vapor plumes following the Hunga Tonga-Hunga Ha'apai (HT-HH) eruptions on January 13 and 15, 2022.

Together, the HT-HH eruptions (21 °S, 175 °W) are estimated to have injected very large quantities of water vapor (>100 Tg H₂O) paired with a modest amount of sulfur dioxide (~ 0.49 - 0.56 Tg SO₂; 0.25 -0.28 Tg S) into the stratosphere. Whereas the typical e-folding lifetime of SO_2 in the stratosphere is approximately one month, with its conversion gradually increasing the amount of sulfuric acid (H_2SO_4) aerosol, we observed large perturbations to stratospheric aerosol within a few days of the HT-HH eruption. Aerosol layers with the highest mass corresponded to regions of the plume with high water vapor mixing ratios. Assuming that particles were composed of H₂SO₄, in situ measurements of aerosol number and size can be used to determine vertically integrated aerosol mass and ambient stratospheric aerosol optical depth (sAOD). Together with OMPS sAOD (λ = 997 nm) and MLS H₂O data, these in situ observations from La Réunion (21 °S, 55 °E) were used to calculate the total aerosol sulfur (S) mass (0.22 Tg S after 11 days) of the young plume and provide an estimate of the stratospheric SO₂ e-folding lifetime in these wet conditions (~ 7.3 days), consistent with the initial estimate of SO_2 , the observed partitioning of S between TR²Ex SO₂ (~20 %) and H₂SO₄ aerosol (~80 %), and recent modeling work. B²SAP water vapor and particle size distribution measurements from regular soundings from Lauder, NZ, Hilo, Hawaii, and Boulder, CO, as well as La Réunion in the subsequent months provide compelling evidence of gravitational sorting and settling of aerosol, as well as dilution and transport to higher latitudes in both hemispheres of the water vapor and aerosol plumes.

The Payloads

Instruments:

The Portable Optical Particle Spectrometer (POPS) number and size (D_p >140 nm)

Cryogenic frost point hygrometer instruments (CFH) on TR²Ex and NOAA frost point hygrometer (FPH) on B²SAP flights

SO2 sonde measurements (TR²Ex)

Figure 1. Photo of a TR²Ex payload with a Portable Optical Particle Spectrometer (POPS; Gao et al. 2016) & SO₂ sonde (Yoon et al., 2021), (ozonesonde & CFH TR²Ex payload not shown (a) and a B²SAP payload with a NOAA FPH (Hall et al., 2016), POPS, and ozonesonde.

Site Descriptions

Sites with regular $B^2SAP(4+yearly)$ launches are represented with stars, whereas sites of B²SAP Intensive **Operations Period** (IOP) measurements are shown as points

Figure 2. Map of B²SAP sites (a) and photo of the Maïdo observatory on La Réunion (b).

Immediate impact on stratospheric aerosol and water vapor

Figure 3. Vertical profiles of aerosol dry mass and extinction between Jan. and Jun. 2022 (a-b; calculated from POPS size distribution data) and vertical profiles of measured aerosol size distributions during TR²Ex (c-f).

Due to wind shear, the plume was stretched into a thin, slanted aerosol layer. This layer was sampled multiple times within 6-10 days of the eruption on Jan. 15.

Size distributions reveal an abundance of larger particles (400 nm - > 1 μ m) in parts of the plume above 25 km, corresponding to a region of the plume with substantial water vapor enhancements.

The aerosol composition is unknown – assumed to be sulfate (

Balloon-borne water vapor sondes recorded > 300 ppmv H2O in the upper altitude part of the plume above 25 km or Jan. 22, 2022 at 20 S. Mixing ratios in the lower altitude of the plume were 10x smaller.

Aerosol extinction and mass, as well as water vapor mixing ratios remained elevated in the higher altitude part of the plume through Jun. 2022.

Figure 4. Vertical profiles of stratospheric water vapor measurements from cryogenic frost point hygrometer (CFH) and NOAA frost point hygrometer (FPH) instruments.

The evolution of aerosol and water vapor plumes from the Hunga Tonga-Tunga Ha'apai volcanic eruption

Elizabeth (Lizzy) Asher^{1,2,*}, Michael Todt^{1,3}, Karen Rosenlof³, Troy Thronberry³, Sean Davis³, Ghassan Taha^{4,5}, Paul Walter⁶, Sergio Alvarez⁷, James Flynn⁷, Stephanie Evan⁸, Jerome Brioude⁸, Emrys Hall², Patrick Cullis², Dale Hurst^{1,3}, Gary Morris² ¹CIRES University of Colorado Boulder, Boulder, CO; ²NOAA GML, Boulder, CO; ³NOAA CSL, Boulder, CO; ⁴NASA; ⁵Morgan State University, Baltimore, MD, ⁶St. Edwards University, Austin, TX; ⁷University of Houston, TX, ⁸LACy, CNRS, Saint-Denis, FR *elizabeth.asher@noaa.gov

accumulation.

Less SO₂ than aerosol in the fresh HT-HH plume

Details:

Aerosol presumed to be composed of sulfate or H_2SO_4 Estimated H_2SO_4 in the plume is abbreviated as eH_2SO_4

 ${}_{e}H_{2}SO_{4} = \sum n * \frac{4}{3}\pi (D_{p}/2)^{3} * \rho_{(H_{2}SO_{4})}/MW_{(s in H_{2}SO_{4})}$

Figure 5. Vertical profiles of SO₂ partial pressure and equivalent partial pressure for _eH₂SO₄ on three different dates (ac), and a summary of of the S mass in SO₂ and the S mass in $_{e}H_{2}SO_{4}$. Dashed vertical lines show the SO₂ sonde limit of detection.

calculate the aerosol layer mass

Suomi National Polar-Orbiting Partnership (SNPP)		
Ozone Mapping and Profile Suite Limb Profiler (OMPS LP; Taha et al., 2021)		10 stur
Scale: Aerosol column mass (g m ⁻	⁻²) = 0.139 sAOD + 0.001	ບັ້ 10
POPS calculated sAOD vs. aeroso 0.001) applied to OMPS-LP sAOD	ol column mass Jan. 22 - June. 9 (r² = o.g) to calculate total aerosol mass.	9 8, p < 10
Figure 6. Histogram of (log 10) dai for Jan. 10 between 50 N and 50 S daily OMPS-LP data for Jan. 22 (a) 10 data (black line) was used to da and outside of the plume thereaft line), used as the background sAO deviations above the median (blue also shown. Contour plots of $_{e}H_{2}SO_{4}$ aerosol co equation above and OMPS-LP ret 18 to Jan. 26 (b-f). On Jan. 22, the maximum plume extent between MLS H ₂ O anomalies at 21 hPa is al eruption and La Réunion are mark respectively.	ily OMPS-LP sAOD data (λ = 997 nm) 5, prior to the HT-HH eruption and . The maximum sAOD value from Jan. etermine measurements made within ter. The median of data on Jan. 22 (red DD, and three mean absolute e line), used to identify outliers, are olumn (g m ⁻²), calculated using the rievals of sAOD, for five days from Jan. gray shaded area shows the Jan. 21 – Jan. 23 as determined from lso shown. Locations of HT-HH ked with a cross and a star,	
Stratospheric lifetime (τ) of SC regression against time Assumptions: • SO ₂ injection of 0.26 – 0.287 • Initial burden of H ₂ SO ₄ ~ 0.0 • All the SO ₂ is converted to H • Ignores potential time lag for to diameter \ge 0.14 μ m	D2 can be calculated using a linear Tg S 005 Tg H2SO4 (not other compounds) or particle formation or aerosol grow	vth
• If some of the aerosol was as adopted a more conservative calculated τ_{SO_2} would be lon	ctually ash (e.g., <= 0.012 Tg)or if e estimate of plume area, the iger (9—13 days)	we
Aerosol formation appeared co days of Jan. 13) The total aerosol layer burden i equivalent) Second estimate (MLS H2O) co High altitude part of the plume mass in the aerosol layer	omplete within 20 days of Jan. 15 (22 reached ~ 0.26 Tg S (0.52 Tg SO ₂ onsistent with a modest S injection e contained the 3/4 of the total S	0.4 (S 0.3
Figure 7. A time series of the S using a combination of measur The black shaded region is the burden, the pink shaded region SO ₂ from satellites, the MLS-ba the mass of the plume west of	burden in _e H ₂ SO ₄ aerosol, calculated ements by POPS, OMPS-LP and MLS. total calculated uncertainty in the S is the estimate of the S injected as used element is shown in cyan, and La Réunion on 1/23 0 LITC – vertical	Sulfur burden 0.1

