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1- Key Points

•High resolution hourly fire radiative power (FRP) predictions
enable forecasting of emissions from wildfires several days
in advance so that they can be implemented in air quality
forecasting simulations (such as RAP-Chem)

•Ability to predict the temporal evolution amplitude and
phase of the FRP diurnal cycle.

•Grid free high resolution FRP allows the prediction of asso-
ciated variables useful in emissions predictions such as FRP
Fractionated by land use/fuel type.

2- Motivation

•Fast FRP prediction enables the forecasting of emissions from
wildfires at least 24 hours in advance so they can be used in
air quality forecasting.

•AIFire has the potential to be used not only in air quality
forecast models but also in applications such as plume rise
parameterization, FRP-based emissions estimations and in
helping to derive FRP diurnal climatologies when the number
of FRP samples from satellites are not sufficient to derive the
diurnal climatologies.

•High temporal and spatial resolution FRP models allows not
only the prediction of future fire behavior and emissions. It
also allows the building of robust relationships between car-
bon monoxide (CO) and FRP to quantify CO emissions on
large wildfires.
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Figure 1: FRP is obtained from satellite data and combined
with meteorological variables from forecast models. Fires pix-
els are clustered. Meteorological time series are represented by
a FRP weighted average over the whole fire. The FRP is inter-
polated temporally and decomposed into three demodulated
time series. XGBoost is trained to predict these time series.
Output from XGBoost is recombined and an hourly FRP pre-
diction is obtained. The original fire pixels can then be used
to generate FRP fractionated by LU type.

3- AIFire Main Flowchart
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Figure 2: Flowchart demonstration the main steps to predict the hourly FRP. The workflow shows the steps for both training
and running the AIFire algorithm as well as some implementation details.

4- Fire Clusterization

Figure 3: Clustering of fires in Califor-
nia during Sept 2022. Colors represent
different fire clusters

Fire Clustering is
accomplished with
DBSCAN (Density-
Based Spatial
Clustering of Appli-
cations with Noise)
running on the three
variables separating
the fires, lat/lon and
time. Lat/lon and
Time are not in the
same Cartesian space
so time is transformed
by multiplying it by
an empirical con-
stant with units of
deg/hours. Once we
have the fire clusters
we can make a single
time series (sum of
FRP in space) of

the specific fire and try to extrapolate it. Variables defined
over the fire area (eg wind speed) are also transformed into
single time series by performing FRP weighted averages.
Other, higher moments (standard deviation, etc) may also be
transformed into time series.

5- AIFire FRP Evaluation
compared with RAVE, VIIRS

Satellite and RAP-Chem
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Figure 4: Top: Decomposed FRP timeseries. Bottom: FRP
from VIIRS, direct reconstruction of the above plot, Regional
ABI and VIIRS fire Emissions (RAVE) [Li, Fangjun et al.,
2022], and the average of 24 hour forecasts given by our ma-
chine learning approach, which predicts the above 3 curves that
are reconstructed into a single FRP.

Figure 5: Same as fig. 4 bottom but with the Cameron Peak
Fire (Fall 2020). The ML approach shows good agreement with
RAVE FRP. VIIRS data is lower than both RAVE and AIFire
because of cloud cover.

7- Model Analysis

Figure 6: The relative influence of predictive variables on FRP.
The delay between the input variables and forecast time is in-
dicated by the lag postfix. The ’frp_lp’, ’frp_bp’ and ’frp_hp’
variables refer to the lines in figure 4a.

The lack of meteorological variables in the top features is likely
because our encoding scheme isn’t representing the meteoro-
logical variables as time series properly. We evaluated model
performance with cross validation using a group shuffle split
scheme. We found: Mean Absolute Percentage Error: 13.6%;
Root Mean Square Error: 1310.44 (MW); Median Absolute
Error: 7.5 (MW).

Future Plans

• Include the AIFire model in RAP-Chem to see how it impacts
PROC use and emissions forecasts.

•Use soil moisture data coming from in situ observations (U.S.
Climate Reference Network - USCRN) and fuel data from the
Fuel Characteristic Classification System.

•Fraction FRP by sub-pixel size land use type to further im-
prove emissions forecasts.

•Fire shape/area prediction with principal component analysis
(PCA).


