Dynamics of a Persistent Gulf Stream Heatwave
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1. Background and Objectives 2. Hotspots in High-Resolution Satellite Observations

y O

i High-resolution satellite observations of the

| ongoing marine heatwave in the Northwest
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* Within the North Atlantic Ocean are broad regions of starkly contrasting SST trends.
* SSTs in a 500,000 km? area east of New England have warmed by 1.4°C per century

since 1982 realized in a stepwise shift in 2012.
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* Clear response of the wind stress—anticyclone
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3. Basin-Scale Footprint of Expanding Global Tropics 4. Regional Coupled Dynamics Sustain SST Anomaly
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5. Summary and Outlook 6. Datasets and References

* In 2012, the Gulf Stream ~130 km off the U.S. Mid-Atlantic coast warmed by Poloward expansion of troplos (Hacley cell Jot streshy Sig
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Change in meridional structure of zonal winds (wind stress curl)

Reynolds, R. W, Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An Improved In Situ and Satellite SST Analysis for Climate. Journal of Climate, 15(13), 1609-1625.
Rayner, N. A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(1D14), 4407.

nearly 3°C, in excellent agreement with high-resolution global climate model
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, //% Sea surface temperature: NOAA OIv2 (Reynolds ez /. 2002) and HadISST1 (Rayner ¢ a/. 2003)

simulations subject to a doubling of atmospheric carbon dioxide.

Wind stress, sea level pressure, and surface heat flux: ERA5 (Hersbach ez a/. 2020)

\ 4

Poleward shift of wind—driven subtropical gyre (Sverdrup streamfunction) Hersbach, H., Bell, B,, Berrisford, P.,, Hirahara, S., Horanyi, A., Mufioz-Sabater, J., et al. (2020). The ERAS5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999—2049.
- - " : Ocean mixed layer depth: GLORYS 12v1 (Lellouche ¢7 o/ 2018)
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whereby the induced changes in ocean currents advect warm SS'Ts, inducing a romnen NS Y / heat flux high-resolution system. Ocean Science, 14(5), 10931126,
surface wind acceleration that maintains the 1nitially amplified sea level gradient. I Sea surface height anomaly: CMEMS (CMEMS 2022)
Locally Geostrophic SST warming Locally European Union-Copernicus Marine Service. (2021). GLOBAL OCEAN GRIDDED L4 SEA SURFACE HEIGHTS AND DERIVED VARIABLES REPROCESSED (1993-ONGOING) [Data set].
SST warming SSH rise : : a by advection Mercator Ocean International.
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IS thls p henomenon merely a decadal marine heatwave that Wlll retreat to the l l b AVISO. (2011). AVISO Level 4 Absolute Dynamic Topography for Climate Model Comparison [Data set]. NASA Physical Oceanography DAAC.
(smaller) background SST trend, or a robust feature of the ocean’s response to Enhanced Ekman pumping Bathymetry: ETOPO1 (Amante and Eakins, 2009)
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Chmate Change that we may eXpect to Contlnue Oor even lntenslfy ln Comlng decades? heat flux suction to NW Amante, C. (2009). ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis [Data set]. National Geophysical Data Center, NOAA.




