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Motivation and Objectives

Preview of SLIDT:  Displaying description, instructions, 
date and geometry input requirements all in one  
interface

WHY: 
▪ Climate change → Increased precipitation in some regions → Increased number and 

impact of landslides
▪ Optical, Synthetic Aperture Radar (SAR), and Digital Elevation Model (DEM) image 

processing can be expensive and difficult, thus, there is a need for a free, open-source, 
easy-to-use tool to monitor mass movements 

HOW:
▪ Use free, pre-processed satellite data to automatically detect landslides through Google 

Earth Image (GEE)
▪ Detect drastic changes in vegetation and surface deformation utilizing Sentinel-1 

Multispectral Instrument and Sentinel-1 SAR amplitude ground range detected imagery

GOALS:
▪ Look at four different landslide examples in different climates (arctic, tropical, sub-

tropical) and triggers (precipitation, glacial melting, seismic) to analyze global accuracy
▪ Create a click-and-go tool that can identify global landslides  using satellite imagery and 

machine learning called SLIDT or Satellite Landslide Identification and Detection Tool

Chile – Dec. 2017
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Methodology

Results Observations

Future Work
▪ Calculate accuracy scores
▪ Improve performance and reduce noise
▪ Finish the click-and-go tool and guide
▪ Apply automated supervised learning and 

object-oriented algorithms and compare
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India – Aug. 2020

Canada – Nov. 2020

Indonesia – Feb. 2022

Input:

• Insert before and after dates – a range of 1 
month (~6 images) is recommended for 
averaging all images to improve results

• Assign study area as a geometry layer by 
uploading shapefile or draw polygon in the 
mapping

Optical calculations:

• Mask clouds from Sentinel-2 10m optical data 
(bands: red (R), blue (B) and near-infrared (NIR))

• Calculate Enhanced Vegetation Index (EVI) and 
EVI Change

1. EVI=2.5 x (NIR-R)/(NIR+6×R-7.5 ×B+1)
2. EVI Change:  After EVI - Before EVI

SAR calculations:

• Average ascending and descending of Sentinel-1 C-band 
~20m SAR data (polarizations: VV&VH)

• Calculate SAR change rates to identify which highlights 
landslides the best

1. Subtract: After VV&VH-Before VV&VH
2. Subtract Ratio: #1 then VV/VH
3. Subtract Log Ratio: #1 then VV-VH
4. Ratio: After VV/VH-Before VV/VH
5. After/Before: After VV&VH/Before VV&VH
6. Ratio of After/Before: #5 then VV/VH

Masking (Thresholding and DEM)

• Calculate curvature using NASA Shuttle Radar 
Topography Mission 30m Digital Elevation Model

• Remove flat areas and water from all imagery to 
reduce false positives since landslides are not 
probable in these areas (Handwerger, 2022)

Machine Learning

• Input different combinations of the change rates 
into clusterer and identify which performs best
• Clusterer: Weka-k Means
• Pair 1: All SAR; Pair 2: SAR+ EVI; Pair 3:Best 

• Vary the number of training points and clusters 
for all combinations 

Accuracy Assessment
• Create polygons of landslide using Google Earth 

(~1.5-10m resolution, depending on location)
• Vectorize output from machine learning 
• Calculate intersection over union
• Calculate true positives & negatives and false 

positives & negatives
• Compare scores of all 

Workflow for Optimizing Landslide Change Detection

▪ Including all the change ratios does not 
necessarily mean better identification

▪ Adding EVI significantly improves speckle 
noise caused from SAR (Chile), but in
other cases (Canada) it takes away
information

▪ Combining EVI, subtract, ratio, divide, 
ratio ratio delineates landslides best.

▪ Though Pair 3 shows more connectivity 
and visually accurate results, there is still
many false positives / noise

▪ Increasing clusters both combines and 
separates previously distinct classifications

▪ Different types of noise may be a category 
and can be further masked

▪ Landslide origins are labeled differently 
than landslides body farther away

▪ Increasing training points changes cluster 
labels; split several classifications into two
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