Identifying Global Landslides Using Satellite Imagery and Machine Learning in GEE with SLIDT (Satellite Landslide Identification And Detection Tool)

Motivation and Objectives

WHY:

- Climate change \rightarrow Increased precipitation in some regions \rightarrow Increased number and impact of landslides
- Optical, Synthetic Aperture Radar (SAR), and Digital Elevation Model (DEM) image processing can be expensive and difficult, thus, there is a need for a free, open-source, easy-to-use tool to monitor mass movements

HOW:

- Use free, pre-processed satellite data to automatically detect landslides through Google Earth Image (GEE)
- Detect drastic changes in vegetation and surface deformation utilizing Sentinel-1 Multispectral Instrument and Sentinel-1 SAR amplitude ground range detected imagery

GOALS:

- Look at four different landslide examples in different climates (arctic, tropical, sub-tropical) and triggers (precipitation, glacial melting, seismic) to analyze global accuracy
- Create a click-and-go tool that can identify global landslides using satellite imagery and machine learning called SLIDT or Satellite Landslide Identification and Detection Tool

March. 2022 GEE Imagery

Teodora Mitroi, Kristy F.Tiampo, Michael J. Willis

Results

Pair 1

10 clusters, 12k training points

Pair 2

Observations

- Including all the change ratios does not necessarily mean better identification Adding EVI significantly improves speckle
- noise caused from SAR (Chile), but in other cases (Canada) it takes away information
- Combining EVI, subtract, ratio, divide, ratio ratio delineates landslides best.
- Though Pair 3 shows more connectivity and visually accurate results, there is still many false positives / noise
- Increasing clusters both combines and separates previously distinct classifications
- Different types of noise may be a category and can be further masked
- Landslide origins are labeled differently than landslides body farther away
- Increasing training points changes cluster labels; split several classifications into two

Future Work

- Calculate accuracy scores
- Improve performance and reduce noise
- Finish the click-and-go tool and guide Apply automated supervised learning and object-oriented algorithms and compare

References

Handwerger, A. L., Huang, M.-H., Jones, S. Y., Amatya, P., Kerner, H. R., and Kirschbaum, D. B.: Generating landslide density heatmaps for rapid detection using open-access satellite radar data in Google Earth Engine

Acknowledgments: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 2040434.