

Impact of Sea Surface Temperature Anomalies on Low-Level **Cloudiness and Mesoscale Organization of Trade Wind Cumulus in the Northwestern Atlantic**

Xuanyu Chen (xuanyu.chen@noaa.gov)^{1,2}, Juliana Dias², Robert Pincus³, Charlotte DeMott⁴,

Brandon Wolding^{1,2}, Gary Wick², Elizabeth J. Thompson², Chris Fairall²

¹Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder CO ²NOAA Physical Sciences Laboratory, Boulder CO

³Lamont-Doherty Earth Observatory, Palisades NY ⁴Colorado State University, Fort Colins CO

1. Background

Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC): ^[1]

- Campaign region: lower branch of the northeasterly trade wind (see Fig.1.1)
- SST spatial variation within 1°C
- Oceanic dynamical regime:
 - transition from mesoscale $O(R_o) <<1$ to submesoscale $O(R_o) \sim 1$

3. Results

I. Local coherence between surface wind and SST

Figure 3.1 Covariation of SST and surface wind

• Left panels: An wavelet coherence example on Jan 9, 2020 where two warm features were capture along the

Shallow Trade Cumulus:

- cloud top capped by the trade wind inversion (2km~3km)
- mainly organized into four different mesoscale patterns^[2] (see Fig 2.2)
- cool our planet and resilient to global warming, at the heart of long-standing uncertainties in climate model^[4]

Questions and Objectives:

- Q1: Does the relatively weak and fine-scale spatial variation of sea surface temperature (SST) in the ATOMIC region affect shallow cumulus cloudiness? Seek evidence from observations. (this poster)
- Q2: If so, does it play a role in the formation of any of the mesoscale organizations in the ATOMIC region?
- Obtain process-level understanding from cloud-resolving Large Eddy Simulations (on-going work)

2. Data & Methods

I. Data:

A. ATOMIC field data from RHB and wave gliders

RHB transect.

- Middle panel: Surface wind and SST correlates well at 14 km and 26 km on average.
- **Right panel:** The significant coherence regions at the two characteristic length scales roughly have two different phases
- ~30°, positive correlation, with surface wind lags SST by a phase of 30° (downward mixing mechanism?)
- ~180°, surface wind is out of phase from SST (wind forces the ocean or pressure adjustment mechanism is in play)

II. Relative change in cloudiness in different atmospheric regimes and its relationship with SST gradients

- 10-minute surface wind speed (U_{10})
- 10-minute sea surface temperature

B. Satellite data:

- 5-km daily GOES-POES blended L4 SST product
- 2-km hourly GOES-16 L3C cloud mask
 - \rightarrow 5-km daily averaged cloud cover fraction
- C. ERA5 Reanalysis (daily, 0.25°)
 - Surface wind speed U₁₀
 - Potential temperature profiles (θ)
 - Lower Tropospheric Stability ($\theta_{700} \theta_{1000}$)

II. Methods:

- A. Wavelet coherence analysis on field data
 - Follow recipes developed in [5]
 - Assumption: SST and surface wind measured along transects represent mainly spatial variation.
- B. Statistical analysis on satellite data^{[6],[7]}
 - Relationship between daily cloud cover fraction anomalies and effective downwind SST gradient ($\vec{u} \cdot \nabla SST$).
 - 2. Feature-based composite analysis:
 - Object-based feature detection method based on connectivity (Dias et al. 2012)
 - Two types of features: warm (>0.1°C), cold (<-0.1°C) SST spatial anomaly: $SST_d(x,y) - \langle SST_d \rangle_{600km}(x,y)$ where <SST_d>_{600km}: *Gaussian low-pass filtered at 600km*
 - Composite in a feature-centered, normalized and surface wind aligned coordinate.

is assumed to be weak in this twomonth mean state.

- Overall, we see that the cloudiness increases from northwest (~0.3) to southeast (0.5)

Figure 3.3 Relative change of cloudiness relative to the reference state in four atmospheric regimes.

The first level of the thick black contours: 95% confidence level for positive fractional change

Cloudiness hotspots: significant localized increases in cloudiness; an indication of inhomogeneity in the environment. (e.g., influence from SST warm anomalies)

Blue dashed line: percentile where the SST gradient; >0: cold-to-warm gradient) Red shaded horizontal bar: 95% range of expected values in the null hypothesis.

- On average, enhanced dailymean cloudiness is associated with extreme SST gradients.

III. Feature based composite analysis

Relative to the spatial mean cloudiness (cloud cover fraction), cloudiness increases (decreases) by 5~10% over the center of the warm (cold) features;

Figure 3.5 Composites of cloudiness and its anomalies over warm and cold features in the gravel-favored atmospheric regime.

x/y-axis: cross-wind/downwind distance normalized by radius of the features Dotted circle: radius = 1

Relative to the 2-month mean cloudiness: ~5% increase of cloudiness over the center of warm features, on average, no significant change of cloudiness over cold features.

Premises:

- 1. If the SST features have <u>consistent</u> impacts on cloudiness \rightarrow some local changes in it (relative to when these impacts are negligible.)
- 2. Requirements for consistencies:
 - Features are less transient relative to the clouds (V)
 - Favorable atmospheric environments

4. Summary

• Over scales of 14 km and 26 km, surface wind and SST are mostly be out of phase along 15 RHB and wave glider transects.

- On average, daily cloud fraction increases relative to the 2-month "climatology" for strong SST gradients, regardless of the sign.
- Composite analysis shows that in the gravel regime (U10>8m/s, LTS<15K), 5-10% spatial anomalies in cloudiness occur within 1 equivalent radius of both warm and cold features.
- These results together suggest that atmospheric response to the weak SST gradients in ATOMIC sampling region is likely different from that in region with strong SST gradients. (Hypothesis: pressure adjustment mechanism > downwind momentum mixing mechanism in ATOMIC.)

References:

- 1. Quinn et al. (2021). Measurements from the RV Ronald H. Brown and related platforms as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC).
- 2. Stevens et al. (2020). Sugar, gravel, fish and flowers: Mesoscale cloud patterns in the trade winds. Q J R Meteorol Soc. 2020; 146: 141–152
- 3. Bony et al. (2020). Sugar, gravel, fish, and flowers: Dependence of mesoscale patterns of trade-wind clouds on environmental conditions. Geophysical research letters, 47(7).
- 4. Bony, S., & Dufresne, J.-L. (2005). Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophysical Research Letters, 32, L20806.
- 5. Grinsted et al. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear processes in geophysics, 11(5/6), 561-566.
- 6. Park et al. (2006), Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations, J. Geophys. Res., 111, C03021.
- 7. Desbiolles et al. (2021). Links Between Sea Surface Temperature Structures, Clouds and Rainfall: Study Case of the Mediterranean Sea. GRL

Acknowledgements:

This study is supported by NOAA Climate Program Office under grant number NOAA-OAR-CPO-2019-2005530. The authors also thank support from the Physical Sciences Laboratory. We acknowledge scientists, technicians, crew members and everyone who contributed to the ATOMIC field campaign.