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1. Background

Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction l. Local coherence between surface wind and SST
Campaign (ATOMIC): [1
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Q1: Does the relatively weak and fine-scale spatial variation of sea surface T ) ol e 3 ags'epésgéfiggxsagfd”;n V:’)llt: anrzizr\:i”s?:?l)ags SST by 3
temperature (SST) in the ATOMIC region affect shallow cumulus cloudiness? 8 ' P o & o
» Seek evidence from observations. (this poster) | L = « ~180°, surface wind is out of phase from SS.T (vylr?d forces
Q2: If so, does it play a role in the formation of any of the mesoscale N——. averaged coference the ocean or pressure adjustment mechanism is in play)
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organizations in the ATOMIC region?
» Obtain process-level understanding from cloud-resolving Large Eddy

Simulations (on-going work) Il. Relative change in cloudiness in different atmospheric regimes and its relationship with SST gradients
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. Potential temperature profiles () environment. (e.g., influence from SST warm anomalies)

+ Lower Tropospheric Stability (8700 ~ 81000) lll. Feature based composite analysis
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Premises:
1. If the SST features have consistent impacts on cloudiness = some local 4_ Su m mary

changes in it (relative to when these impacts are negligible.)
2. Requirements for consistencies:
e Features are less transient relative to the clouds (V)

* Over scales of 14 km and 26 km, surface wind and SST are mostly be out of phase along 15 RHB and wave glider

* Favorable atmospheric environments transects.
R e Figure 2.2 Definition of four atmospheric * On average, daily cloud fraction increases relative to the 2-month “climatology” for strong SST gradients, regardless of
e | howy | regimes based on ERA5 U,y and LTS.?! the sign.
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* Composite analysis shows that in the gravel regime (U10>8m/s, LTS<15K), 5-10% spatial anomalies in cloudiness occur

S B . ----:?-f-f:--_; ----------------- cloud organizations within 1 equivalent radius of both warm and cold features.
2 Ll LR associated with the
| Nt * IEEImEE * These results together suggest that atmospheric response to the weak SST gradients in ATOMIC sampling region is
st e ) ,‘ : likely different from that in region with strong SST gradients. (Hypothesis: pressure adjustment mechanism >
o 1w 5 s w18 10 Sugar (2km)  Fish (2000km) downwind momentum mixing mechanism in ATOMIC.)
LTS (K) Adapted from Stevens et al. (2020) 2]
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