

Martin Breitenlechner 🛲 🖤, Gordon A. Novak 🛲 🖤, Andrew W. Rollins [🆤], J. Andrew Neuman 🛲 🖤, Samantha Lee 🛲 🖤 & Patrick R. Veres 🖤

Instrument description

- Based on a Vocus CI-TOF (Aerodyne Research Inc.): The ion-molecule-reactor (IMR) consists of a resistive glass drift tube surrounded by a focusing quadrupole ion guide. The drift tube voltage gradient provides as a constant electric field along its axis and allows for controlling the reagent ion cluster distribution.
- A new ion source replaces the original Vocus glow discharge ion source. Two VUV lamps produce photons, which photo-ionize molecules with ionization energies below 10.6 eV.
- The choice of gases supplied to the ion source determines the reagent ion produced, e.g., methyl iodide (CH₃I) in nitrogen for producing iodide anions (I⁻).

- For operation in the stratosphere onboard a high-altitude research aircraft, a two-stage pressure controlled inlet is used: Sample air enters through two consecutive critical orifices; the pressure between the two orifices is kept constant at approx. 40 mbar at altitudes between 3 and 20 km.
- Pure water vapor is directly supplied to the drift tube through a dedicated port to reduce the dependency of sensitivities due to changes in ambient humidity.
- Fully automated start-up on the ground and operation at temperatures down to 190K and ambient pressures as low as 50 mbar.

A versatile Chemical Ionization Mass Spectrometer for Stratospheric Research

		⁻ • ₂	Reagent i Calibrants Other	ions S	
-)H ⁻					
		·			
300	350	400	450	500	

Sensitivities of up to 70 cps ppt⁻¹ are achieved (for nitric acid).

for a sample interval of 10s, 3 standard deviations) for formic acid, nitric acid, bromine, chlorine and chlorine nitrite in iodide mode

Species

Formic acid Nitric acid Bromine Chlorine nitryl chloride

Humidity dependency of sensitivities – Added pure water vapor reduces ambient sample humidity dependency:

Versatility

- - Meth
 - Ammo
 - Benzene (C₆H₆)
- Monoterpenes)

Sensitivities & Limits of Detection

Chemical formula	Sensitivity (cps/ppt)	Background (cps)	Background	Limit of detection 10 s, 3σ , (ppt)
НСООН	23	7.9·10 ⁵	34 ppb	51
HNO ₃	76	$5.9 \cdot 10^4$	780 ppt	4.3
Br ₂	35	220	6 ppt	0.6
Cl ₂	8.9	18	2 ppt	0.7
ClNO ₂	9	72	8 ppt	1.3

 VUV lamps ionize molecules with an ionization energy < 10.6 eV The choice of CI gas determines reagent ion species:

yl iodide (CH₃I)	\rightarrow	ſ
onia (NH₃)	\rightarrow	${\sf NH_4}^+$
ene (C ₆ H ₆)	\rightarrow	$C_6 H_6^+$

Benzene cations for select biogenic organics (e.g., DMS, Isoprene,

