Retrieval of perchlorate and other new aerosol species from mass spectra measured by Aerodyne aerosol mass spectrometers (AI\/IS)
w during previous aircraft missions around the globe
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iodine in color. [11] Jo et al.,, Geosci. Model Dev., 2019
* KORUS-AQ data was revisited to retrieve particulate iodine and MSA. Hioh trati (up to 1 3) of particulate iodi b d duri flioht the industrial | th ‘ t of K (Fi 9) e ~0.15 pg sm=3 of MSA was observed over SMA. Anthropogenic source of [12] Marais et al., ACP 2016
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* The absence of correlation between iodine and O, indicates low gas phase halogen species.

from China. MSA aerosols will be investigated. [16] Hodshire et al., ACP, 2019
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