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Abstract Motivation and Retrospective Simulations =~ - Canareduced complexity chemical mechanism compete with

Experimental air quality forecasts with the Rapid.-Refresh nec.)del coupled to cherr.wistry (RAP—.Chem) at !\IOAA E.SRL began in July . Icr:tializid 29 JL:IV 2(]2.2|0 \A({ith C{’ell‘ault”\)NRF- . Two simulations: with and without * Does improved phy;ics /c:emistry coup“ng'impmve AQ and

2020 in an effort to capture changing atmospheric composition due to the emissions reductions associated with the COVID-19 . Twirf;;rii?:a profiles (i.e., “clean zerosol (direct) foedback o forecaste?

lockdowns. The full gas-phase and aerosol chemistry mechanism used in the RAP-Chem and proposed for transition into the . 1.371 Aug']: forced with GFS Analysis * Wildfire and heat wave periods +  Can this modeling system accurate simulate AQ during

Unified Forecast System (UFS) offers a potential lower computational cost alternative compared to mechanisms used in e 1-30 Sep: GFS Fest + RAP DA * Primary analysis for August 2020 exceptional events (e.g.,0, and PM from wildfires)

similarly capable operational models. Additionally, the RAP-Chem includes wildfire emissions of gases and aerosols, natural v TAMWITIrE Acres; U5, 1985-2021 (xcept Alasie) e 25 e s AP, 32420, 125117 Lo 25 dog Tl AP, 32420, 125117 - _

emissions of biogenic gases, dust, and sea salt, and simulates aerosol feedback to atmospheric physics allowing evaluation of | | e o S R N R A0D550, Aug 152 Sep-15,2020

the impact of changes in atmospheric composition on numerical weather prediction and feedbacks on air quality. Here we will Eg —H- i3 E - B e

show results of retrospective forecasts of the August-September 2020 wildfire season to highlight key model features and im = i - _ E % _ I P g PO

developments in the RAP-chem that are slated for potential implementation into the UFS; specifically, we will demonstrate the i : : '/!y&\ f o ﬂk’*

suitability of a reduced complexity gas-phase chemical mechanism and its coupling to a VBS-SOA aerosol module, the Gl N F ‘\‘ l/iM\ A E *

improvements associated with the use of inline non-local mixing of chemical species with the MYNN PBL scheme, and $282F 828282888z 2558 | ‘_. Uy “ff”"«*""*‘!%‘\}‘i'\\nﬂ\\ﬁ B it R e and ocean:
Adgust 5020 BRI NVican daily 1 deg. [MODIS-Aqua MYDO08_D3 v6.1]

coupling of the full TUV photolysis module.

RAP-Chem real-time workflow -

1) The Rapid-Refresh (RAP, domain outer 2) Remotely-sensed fire radiative power 3) Total ozone columns from the real-time  4) Previous forecasts’ chemistry and land surface fields are cycled; season and 5) As model integrates, plots are published th

green, with nested HRRR) model cycles (FRP) is used to create emissions over the GFS forecast are ingested for more day-specific emission related data for anthropogenic, biogenic, and dust are (https://rapidrefresh.noaa.gov/RAPchem/)
hourly. We use the 06Z and 187 forecast’s domain and speciated to the chemical accurate photolysis rates and chemical BCs loaded into the input file (pollen forecasts starting May 1, 2022). Model and subsetted data is made available to
ICs & BCs, taking advantage RAP’s DA. mechanism used in RAP-Chem are ingested from the RAQMS global CTM integration begins and takes ~4 hours on 666 cores. collaborators via GSU's FTP server
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