

Motivation

- The Convective Available Potential Energy (CAPE) low bias issue is listed as one focus area in the Final List from 2020-21 OSTI Forecasters Workshop.
- CAPE magnitudes are reduced in Global Forecast System (GFS) v16 compared with GFS v15 (Yang et al. 2020)

UFS Case Studies Platform

- We investigate the 2020 low summertime CAPE case included in the case catalog of Unified Forecast System (UFS) Case Studies Platform.
- The UFS Case Studies Platform provides resources for representative cases that reveal GFS forecast challenges and includes model setup for multiple UFS applications,

storage, results, and example visualization scripts.

2020 July CAPE Case

- Model: GFS v16 and GFS v15p2
- **Initialization:** 00z Jul 23, 2020
- Initial conditions: GFS operational dataset in NEMSIO format
- **Resolution:** 128 vertical levels and C768 spatial resolution (~13km)

Weather Prediction Center (WPC) surface analysis at 07/23/2020 at 18 UTC

- Warm front passage over Northern Great Plains
- No significant synoptic pattern impacting the Southern Great Plains (SGP)

Confronting the low summer CAPE behavior in GFSv16

Xia Sun^{1,2,3}, Dom Heinzeller^{1,2,3}, Ligia Bernardet^{2,3}, Linlin Pan^{1,2,3}, and John Brown²

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder CO; 2. NOAA Global Systems Laboratory, Boulder CO; 3. Developmental Testbed Center, Boulder CO

