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Analyzing Lidar Observations over McMurdo, Antarctica to Investigate Vertical
Development of Gravity Wave Energy In the Stratosphere and Mesosphere
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Lidar Observations of gravity waves have been made
over McMurdo Station, Antarctica near-continuously
since 2010. Lidar can measure waves in a wide spectra
from diurnal tides to turbulence, enabling a range of
studies. A major challenge of lidar GW studies is that
shot-noise in the photon counting process strongly

Bias in Lidar Epm Calculation
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wave strength.

Gravity wave potential energy mass density (Epm) is used to estimate
It can be used to calculate momentum flux, observe
secondary gravity-waves, and can be calculated easily using atmospheric
temperature variance. Plotted as a dashed black line is the adiabatic
growth rate of the Epm (its slope is relevant, not its absolute value).

These profiles are assembled from conservatively screened data from
2010-2020, where these means are weighted by observation length.
The dashed line are a fit of the form A -exp(b - x) intended to
illustrate general trends but not to characterize any physical
mechanism other than general amplitude of the season’s Epm.
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