
• A random forest2,3 is used to predict the SSI PDF (Fig. 4).

• Predictions capture variations in the shape and size of both 
modes3 (Fig. 5). Note that 1D radiative transfer does not capture 
even the bimodal shape, let alone the detailed variations.

• Aerosol embedded in shallow cumulus cloud fields significantly 
perturbs the SSI PDF3 (e.g., Fig. 3).

• The shape of the SSI PDF is quantified by fitting distributions2,3.
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• Seek relationships between 9 aerosol and cloud field properties, 
and 7 SSI PDF fit parameters3 (Table 1). 

• Large eddy simulation (LES) - with a horizontal grid spacing of 
100 x 100 m and domain size of 24 km - is run for more than 
40 separate days spanning the summers of 2015-2018 that 
each develop shallow cumuli at the Southern Great Plains 
(SGP) Atmospheric Observatory in Oklahoma1,2,3 (e.g., Fig. 1).

• For simulated days in 20183, an observationally-constrained 
aerosol variability is implemented and the resulting 3D cloud 
and aerosol fields are ingested into 3D radiative transfer.

• Aerosol extinction of the direct beam darkens clear-sky SSI, 
and aerosol scattering brightens cloud shadows (Fig. 6). 

• Machine learning importance metrics quantify the importance 
of aerosol between clouds for controlling the SSI (Table 2).

• Within the shallow cumulus cloud regime, aerosol variations 
between clouds have a stronger influence on the SSI variability 
than variations in the cloud properties themselves.

Fig. 6. Schematic of aerosol influence on SSI in the presence of shallow cumulus clouds.
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• Ubiquitous shallow cumulus clouds exhibit detailed 3D 
structure causing complex variability in surface solar irradiance 
(SSI) relevant for renewable energy and other applications.

• We aim to understand and predict the SSI variability by 
examining its relationship with the cloud-aerosol environment.
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Conclusions

1. Surface solar irradiance variability beneath shallow cumulus clouds is complex but is predicted 
accurately with a handful of representative aerosol and cloud field properties via machine learning.

2. Aerosol exert an inordinately large influence on surface solar irradiance for shallow cumulus clouds.

3. Results have relevance for renewable energy assessments and several other applications.

Cloud-Aerosol-Radiation Simulation

Fig. 4. Schematic of Random Forest as employed in this study. 
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• The observed shape of the SSI probability density function 
(PDF) beneath shallow cumulus clouds is only reproduced with 
3D radiative transfer1,2 (e.g., Fig. 2).

3D Radiative Effects Control Surface Solar Irradiance

Fig. 3. Simulated SSI PDF at 14:30 on 22 May 2018 without aerosol (blue) and with 
aerosol that is non-absorbing (orange) and partially absorbing (green).

Source: https://www.arm.gov/news/features/post/49265

Observed image

Simulated cloud and SSI

Fig. 2. Observations (left) and simulations (right) of shallow cumulus clouds and 
associated SSI PDFs on the afternoon of 27 June 2015 at the SGP site in Oklahoma. 

Observed SSI Simulated SSI

Aerosol and cloud field properties (inputs) SSI PDF fit parameters (outputs)

Mean cloud fraction: 𝒇𝑪 [5.2–34.0 %] Normal location parameter: 𝝁

Dispersion in cloud liquid water path: D(LWP) [1.0–2.3] Normal shape parameter: 𝝈

Mean in-cloud drop number concentration: 𝑵𝑪 [312–1540 cm–1] Weight of small SSI mode: w1

Mean projected cloud area: 𝑨𝑪 [0.15–1.56 km2] Lognormal location parameter: θ

Mean distance to nearest cloud: 𝑫𝑪−𝑵𝑵 [0.80–1.23 km] Lognormal shape parameter: s

Cosine of solar zenith angle: cos(SZA) [0.77–0.97] Lognormal scale parameter: m

Minimum aerosol optical depth at 500 nm: 𝑨𝑶𝑫𝒎𝒊𝒏 [0.06–0.91] Weight of large SSI mode: w2

Mean aerosol single scattering albedo at 500 nm: ωa [0.75–1.00]

Mean aerosol asymmetry parameter at 500 nm: ga [0.50–0.66]

𝝁 𝝈 𝒘𝟏 𝜭 𝒔 𝒎 𝒘𝟐

𝒇𝑪 9.5 ± 0.9 20.4 ± 1.6 41.1 ± 3.1 10.5 ± 0.8 10.8 ± 0.9 17.7 ± 1.5 28.6 ± 2.1

𝑫 𝑳𝑾𝑷 0.3 ± 0.0 3.1 ± 0.2 1.3 ± 0.1 0.2 ± 0.0 2.0 ± 0.1 1.3 ± 0.1 1.4 ± 0.1

𝑵𝑪 0.6 ± 0.0 3.7 ± 0.2 2.3 ± 0.2 0.4 ± 0.0 3.1 ± 0.2 4.2 ± 0.3 6.0 ± 0.6

𝑨𝑪 0.7 ± 0.1 4.9 ± 0.3 8.4 ± 0.7 1.3 ± 0.1 3.4 ± 0.2 4.6 ± 0.4 5.6 ± 0.4

𝑫𝑪−𝑵𝑵 0.2 ± 0.0 2.6 ± 0.1 1.0 ± 0.1 0.2 ± 0.0 1.9 ± 0.1 1.7 ± 0.2 1.4 ± 0.2

𝒄𝒐𝒔 𝑺𝒁𝑨 1.0 ± 0.1 6.0 ± 0.5 2.9 ± 0.3 0.5 ± 0.0 4.2 ± 0.3 10.0 ± 1.0 4.7 ± 0.5

𝑨𝑶𝑫𝒎𝒊𝒏 62.7 ± 4.4 37.9 ± 2.8 28.3 ± 2.2 58.8 ± 4.3 60.9 ± 3.5 37.7 ± 2.7 39.1 ± 2.6

ωa 22.8 ± 2.1 14.8 ± 1.4 8.6 ± 1.2 23.5 ± 2.0 7.6 ± 0.7 14.1 ± 1.8 5.5 ± 0.4

ga 2.3 ± 0.1 6.6 ± 0.3 6.1 ± 0.5 4.6 ± 0.3 6.2 ± 0.4 8.7 ± 0.8 7.6 ± 0.5

Fig. 1. Simulation of shallow cumulus clouds and associated SSI at 14:30 on 27 June 
2015 at the SGP site in Oklahoma. An observed total sky image valid at the same 
location at time is provided for reference in the upper left.

Table 1. Machine learning inputs (range of values in square brackets) and outputs.

Fig. 5. Six random predictions of SSI PDFs on independent test data. 

Table 2. Permutation importance of each input for each output separately. For each 
input, darker shading indicates relatively higher importance.

No aerosol Scattering aerosol
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