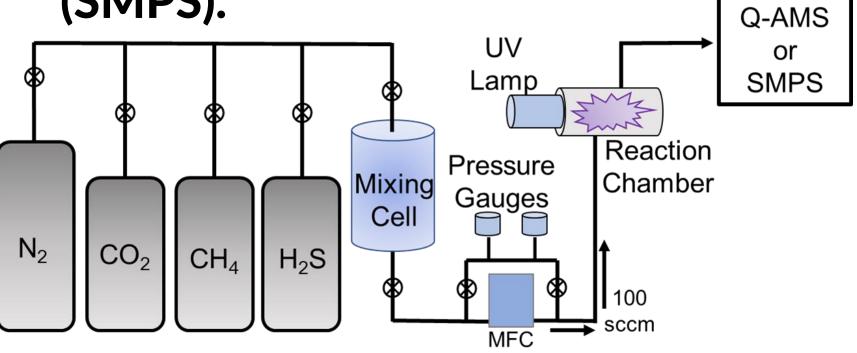
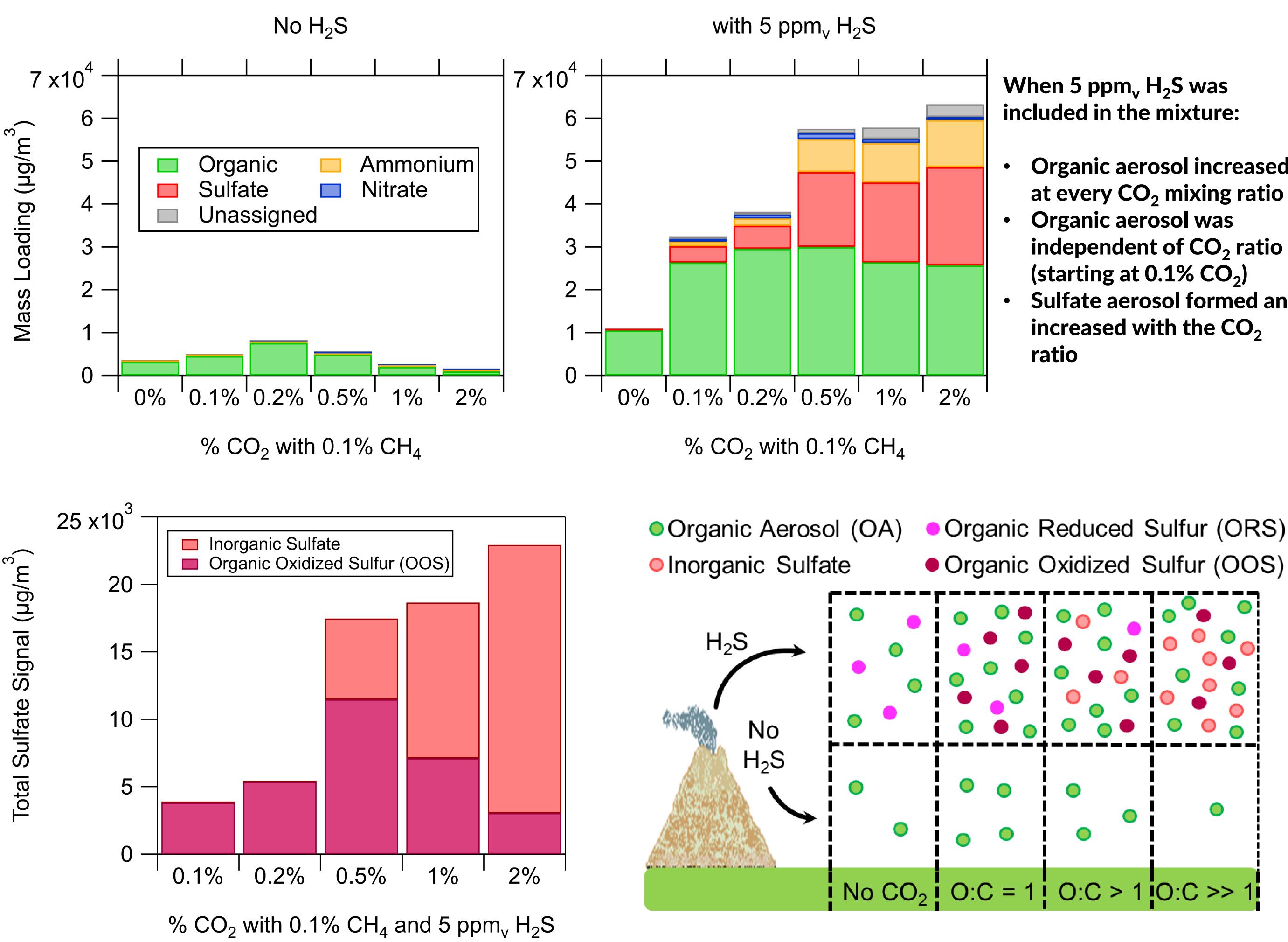
Trace H₂S Promotes Organic Aerosol Production and **Organosulfur Compound** Formation in CO_2 - CH_4 - N_2 Haze Chemistry


Nathan W. Reed, Boswell A Wing, Margaret A. Tolbert, Eleanor C. Browne

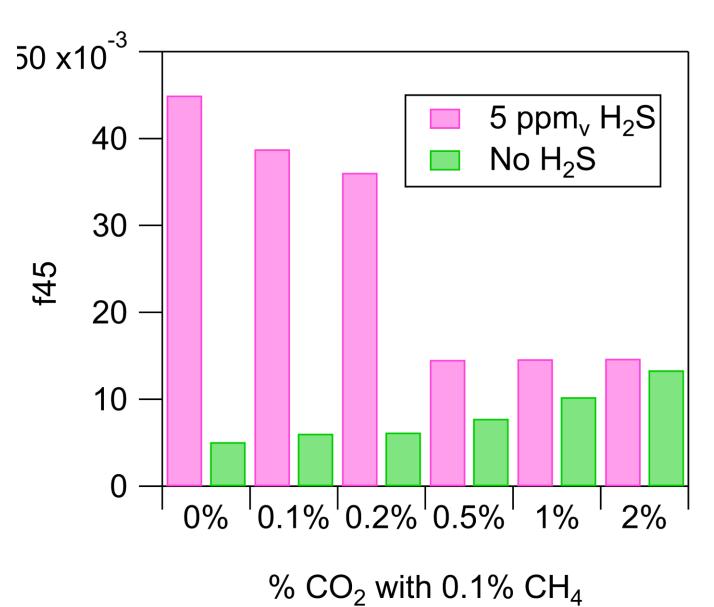

INTRODUCTION

- > Organic haze of Archean Earth likely influenced climate and habitability
- > Sulfur isotopes best constraint on O_2 levels during Archean eon
- Current view of Archean atmosphere generally separates **CO₂-rich organic haze chemistry** and atmospheric sulfur chemistry
- > Volcanic/biological H₂S were likely present in the Archean atmosphere.^{1,2,3}

OPEN QUESTIONS

- \succ What is the interplay between H₂S and haze chemistry? How does this change as a function of CO_2 ?
- \succ Could H₂S enhance organic aerosol production at high CO₂ mixing ratios ($CO_2:CH_4 > ~1$) as it does in **CO₂-free experiments**?⁴
- How could this chemistry affect our understanding of Archean atmospheric sulfur and haze chemistry? METHODS
- > Generate haze particles from gas mixtures with 5 $ppm_v H_2S$, 0.1% CH_4 , and 0.1-2% CO_2 in N_2 via a flow system and UV reaction cell.⁴
- > Measure the particle mass loading and composition in real time with quadrupole aerosol mass spectrometry (Q-AMS) and a Scanning Mobility Particle Sizer (SMPS).

Organic oxidized sulfur formed at all CO2 mixing ratios investigated and accounted for the majority of the sulfate formed for $CO_2 < 1\%$


Addition of trace H₂S to early Earth haze analog experiments increased organic aerosol production and produced inorganic and organic sulfate aeroso

- **Organic aerosol increased** at every CO₂ mixing ratio
- **Organic aerosol was** independent of CO₂ ratio (starting at $0.1\% CO_2$)
- Sulfate aerosol formed and increased with the CO₂

Illustration of conclusions. The organic aerosol is independent of O:C/%CO₂ and inorganic and organic sulfur are produced with H₂S included.

CONCLUSIONS & SIGNIFICANCE

- > Trace amounts of H_2S (5 ppmv) in Archean-like gas mixtures produced organic and sulfate aerosol, even at CO₂: CH₄ ratios >~1.
- > There was no evidence for S_8 or H_2SO_4 found at any CO_2 mixing ratio studied here.
- > We found evidence for both inorganic and organic sulfur aerosol, including organic oxidized sulfur and organic *reduced sulfur* (see figure below).

> These results differ from the current thought of Archean atmospheric sulfur reservoirs.^{5,6}

Potential implications for Archean sulfur isotopic records, the Archean

atmosphere/climate, biological impacts such as early life and nutrient sources, and for CO_2/CH_4 haze chemistry in exoplanetary atmospheres.⁷⁻¹⁰

Contact: nathan.w.reed@colorado.edu

University of Colorado Boulder & Cooperative Institute for Research in Environmental Science (CIRES), Boulder, CO 80309 This work was supported by NASA grant 80NSSC20K0232

- Kump & Barley, *Nature*, 2007, 448, 1033-1036
- Archer & Vance, *Geology*, **2006**, 34(3), 153-156
- Holland, Geochimica et Cosmochimica Acta, 2002, 66(21), 3811-3826
- Reed, ACS Earth and Space Chem, 2020, 4, 897-904
- Kasting, Origins of Life and Evolution of the Biosphere,
- Pavlov & Kasting, *Astrobiology*, **2002**, 2(1), 24-21
- Halvey, PNAS, **2013**, 110(44), 17644–17649
- Lie, Archives of Microbiology, **1996**, 166(3), 204–210
- Arney, Astrobiology, 2018, 18(3), 311–329
- 10. De Duve, Phil. Trans. R. Soc., 2011, 369(1936), 620-623

