Integration of DINSAR time series with GNSS data for volcanic eruption early warning applications

s b Y 9
Authors: Brianna Corsa (Brianna.Corsa@Colorado.edu); Magali Barba-Sevilla; Kristy Tiampo; Charles Meertens e University of SOl
. CIRES and Department of Geological Sciences
Sham e S Project Background: Results
4r ﬁ'J L J OFs ) ( B = - What is GSF? Figure 5 and 6 show results from the 3D cumulative displacement maps provide new information
NG ' - / | «wsred . - . - . . . o -
> |- — 1 — = * The collaborative GeoSCIFramework (GSF) project aims to improve regarding the pre-, during-, and post-eruption phases of the Hawaiian volcanic system at unprecedented |
: | L ', | volcano, earthquake, and tsunami early warning applications spatial scales and revealed surface effects from magma movement and seismic activity leading to two
C e () e e - How? different types of eruptions. The results from integrating the GNSS data with the DInSAR data showed a |
: 4 (o Pt © -+ Apply big data analytics and machine learning methods to large streams more constrained uplift pattern than the DINSAR or GNSS results alone.
18 : | — L | of real-time data from a mix of seismic, geodetic-related sensors, and == 2
gt . S— ' , differential interferometric synthetic aperture radar (DInSAR) satellite Figure 5: (Left) Comparison of () the g i 52) n2{ (B 5b) 50)
: : maseies | | setsons e L macer the integrated time series converted tc W - i ol o -
¢ » 2 | BE1Y: final cumulative LOS DINSAR scene anc ¢ ad o
| = | Why? cumulative GNSS interpolated map, also cc 08 1N L = -0
Figure 1: GeoSCIFramework Project Architecture. At the top, "Frontend" It will provide researchers with a suite of datasets and a means to detect, ey . ]

-1 depicts the different user-facing components that the GSF provides: from
visualization and interactive computing tools to streaming data, static

monitor, and analyze geophysical activity over a region of interest.

datasets, and even direct access to advanced analytics frameworks. At 2
bottom, "Backend" shows the different components that take care of the FOCMS Here ’

heavy lifting: ingesting, curating and consolidating data, computational o Preparation of DINSAR + GNSS integrated dataset for volcano modeling

processing, and dataset management.

and streaming through machine learning algorithms

Methodology:

Part I: Automated processing of DINSAR imagery over Hawaii from Nov. 2015- April 2021 (SLC = Interferogram)
* GMTSAR source code (now using ISCE2 Stack Processor)
* Orbital, topographic, and atmospheric corrections, must be applied to isolate the deformation signal.
» 35 Allowed Days between image pairs: 250 descending SLC images = 671 interferograms

Part 1I: DINSAR time series generation

* Additional atmospheric (GACOS) and topographic corrections
* Applies SBAS/NSBAS inversion methods
* GIANnT (now using MintPY) time series software
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The energy function is as follows:
U(b/a) = T, 5 ®
where U (%) is the likelihood energy, b is the observation with
uncertainty, o, a is the unknown parameter, and N is the number of
observations, or pixels within the acquisition. The resulting adaptation

of Equation S1 to our geodetic displacement datasets is:
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where ¢ is the standard deviation for the measurements, d-°° is the
cumulative LOS displacement, [S;?°,S1%%,519°] are the unit vectors
pointing from the ground to the satellite, and [d{"°,d5">,dS"°] are

the 3D displacements from the kriging interpolated GNSS data.
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Part III: Integration of DINSAR and GNSS
data from 48 overlapping stations in

Hawaii
* GNSS is known for high precision in the
horizontal directions (east and north) but |
vertical motions have larger uncertainty. o o] A I
 DINnSAR sensors are most sensitive to vertical “
displacements and can improve ground
velocity estimates in the up direction
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minimize linear trends of tectonic motion om0 a0 e00 000
* Ordinary kriging algorithm with exponential
. | INTEGRATED RESULTS
model to generate variograms | cast (1DL0S Referonca
* Qutputs three cumulative displacement maps > \ 20 [ [ e e, 3
(east, north, and up) with same :

discretization/geocoding as DINSAR output
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* Integration of DINSAR + GNSS data is based — - ¥ - |-
off Samsonov, 2006 and involves a Bayesian P N / 192 I
statistical model with Markov Random Field | s 1650 655 1556 54 1552 A580 1543
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INTEGRATED RESULTS

Theory and outputs with 100-m resolution

* Opver large areas, the code produced 3D high-
resolution cumulative displacement maps and
the corresponding uncertainties for each
individual date or time-step of the series.

* At a single point where DINSAR and GNSS

overlap, can pull integrated time series
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Figure 6: (Right) a) Final, cun {i”
distribution for the 3D integrated ¢
(November 2015-April 2021). b) Total
results associated with figure a. Unce
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Uncertainty Analysis:

* As aresult of the interpolation
method, uncertainties associated with
the integrated, cumulative 3D
displacement maps are greater than
the uncertainties calculated at a single

pixel .
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« Maximum uncertainties in the east,
north, and up directions are 7.07 cm,
5.82 cm, and 5.72 cm, respectively.
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Figures 7 and 8 show results from the
plotted time series at a single pixel,
where CRIM GNSS station and the n | B =
DInSAR time series overlap (see subset N | L
plot in Figure 7a. |
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Future Work:

Volcanic source modeling using both DInSAR and fused results
* Spherical Mogi (1958)
* Non-linear spherical (Yang et al., 1988)

o Sill-like (Fialko et al., 2001)
* Dyke/Horizontal tensile dislocation (Okada, 1985)

Generate synthetic training dataset
* Using the volcanic source parameter results from above and methods developed by (Lee et al.,
2016), we will develop an artificial data set that will be used for training the machine learning
algorithm.

Apply machine learning on datasets and test with real data
» Hawaii has 3 eruptions captured in time series sequence. After training the MLA, we will apply it
to each eruption separately and test whether it is able to forecast the other eruptive events
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