

Xin Lan^{1,2}, Stefan Schwietzke^{1,3}, Sourish Basu^{4,5}, Lori Bruhwiler², Edward Dlugokencky², Sylvia Englund Michel⁶, Owen A. Sherwood^{6,7}, Pieter Tans², Kirk Thoning², Giuseppe Etiope⁸, Qianlai Zhuang⁹, Licheng Liu⁹, Youmi Oh⁹, John Miller², Gabrielle Pétron^{1,2}, Bruce H. Vaughn⁶, Monica Crippa

¹CIRES, University of Colorado Boulder, USA ²NOAA/ESRL/GML,USA ³Environmental Defense Fund, Germany ⁵ University of Maryland, College Park MD, USA ⁴NASA Goddard Space Flight Center, USA ⁷ Dalhousie University, Canada ⁸Istituto Nazionale di Geofisica e Vulcanologia, Italy ⁹Purdue University, USA

Introduction

The atmospheric burden of CH_4 has renewed its increasing trend since 2007, but the drivers behind are still debated. Hypotheses proposed in recent studies cover a very diverse range of drivers including changes in both CH₄ emissions and sinks. Around the same time that the increase started, the ratio of stable carbon isotopes of CH_4 (¹³C/¹²C), denoted by $\delta^{13}C-CH_4$, started to decrease after two centuries of increase (Ferretti et al., 2005). In this study, candidate emission and sink scenarios are constructed and simulated in the TM5 chemical transport model to produce 3D fields of atmospheric CH₄ and δ^{13} CH₄, which are compared with observations.

Fig. 1: Marine Boundary Layer sites from NOAA's Global Greenhouse Gas Reference Network (Left). Globally averaged atmospheric CH_4 and $\delta^{13}C-CH_4$ (right); the blue curves are approximately weekly data and the black curves are annual means.

δ^{13} C-CH₄ constraints

 CH_4 and $\delta^{13}C-CH_4$ measurements in the atmosphere see the combined effect of emission and sink processes, including emissions from fossil, wetlands (WL), rice, waste/landfills, ruminants, and biomass/biofuel burning, and sinks from soil consumptions, reactions with hydroxyl radicals (OH), chlorine, etc.

Different CH₄ sources have distinct δ^{13} C-CH₄ signatures and different CH₄ sinks have different preference for oxidation of ¹²C over ¹³C. Figure above simplifies the idea of using δ^{13} C-CH₄ to partition microbial (Mic), fossil (FE) and biomass/biofuel (BB) emissions, when assume known sinks from models. δ^{13} C-CH₄ observations also helps to inform recent trends in CH₄ emissions.

Improved constraints on global methane emissions and sinks using δ^{13} C-CH₄

- δ^{13} C-CH₄ observations.

Large uncertainties in wetland CH₄ emissions

Wetland (WL) emissions are the biggest natural source of atmospheric CH_4 and their uncertainties are also the largest. We compare model results based on a static WL area map (Mathew and Fung, 1987), and a dynamic inundation map combined with the Global Lake and Water Dataset (Poulter et al., 2017).

Global total annual WL emissions from both the static WL map and the dynamic WL map are similar, but discrepancies exist in the spatial distribution of emissions.