University of Colorado Introducing AMATI, a New Tool for Rapid

Soulder Aerosol Thermodynamic Calculations on Large Field Datasets
//A P Campuzano Jost'?, DT Sueper'3, S Clegg? BA Nault3, Hongyu Guo'?, JL Jimenez'?,

CIRES ICIRES, University of Colorado, Boulder, 2Department of Chemistry, CU, Boulder, 3Aerodyne Research,, 4P Department of Chemistry, University of East Anglia

INTRODUCTION AMATI PANEL DESCRIPTION AND RESULTS

As several recently published reviews have
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AMATI (AMbient Aerosol Thermodynamic calculator in Igor) is a software package for the Igor Pro analysis software designed to run a standalone
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and consistency checked E-AIM model input in the second panel and the buttons to both run the model and

Inputs used to calculate the pH and aerosol water plots shown below, taken during the FIREX-AQ campaign on the ) ) S , , : :
explore iteratively the sensitivity to a particular input (see section to the left of this one)

NASA DC-8 flying over the LA Basin on Sep 5th, 2019, recorded at 1 Hz (about 9000 individual points). These were
taken as is by AMATI, total computing time was 85 s..

Main results: pH and Liquid Water Standard diagnostics to assess model output

« Based on our past work using the Extended Aerosol Inorganic Model (E-AIM) (Clegg et al, 1998; Wexler and Clegg,
2002; Friese and Ebel, 2010) to infer acidity in 10 field datasets, this poster presents our development work on a new,
user-friendly tool to run E-AIM on field datasets, with a strong focus on users of the Aerodyne Aerosol Mass
Spectrometer (Canagaratna et al, 2007).
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Main Output of AMATI, for a test d&tals&t from the NASA FIREX-AQ mission (inputs shown below) (top left): Timeseries A diagnostics plot provide by AMATI, showing the partitioning of nitrate between the aerosol and gas

INPUTS / SENSITIVITY ANALYSIS

of pH (as in the more commonly reported molarity based pH, pH_f), both all points and the ones screened by AMATI phase in the measurements and in the model for the test dataset shown above. Note that while overall the
for highest model trustworthness (which for aircraft datasets such as this one can be a large fraction) (top right) concentrations agree, the partitioning ratio epsilon (particulate/total nitrate ratio) is poorly correlated. The
. PLI : Correlation of pH_f vs the activity based pH, which is also calculated (bottom left) Timeseries of the inorganic aerosol model sensitivity was explored further by iterative approaches (see left panel), and it was found that
Iteratlve approaCh tO SenSItIVIty analyS|S water output from E-AIM Organic water (based on a simple O/C of OA parametrization of kappa) is included as well modest adjustments to the ammonia concentration within instrumental uncertainties greatly improved the
(bottom right): Total vs inorganic only liquid water, colored by dry OA fraction in the aerosol overall measurement/model agreement.
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errors challenging. One

) ) The ISORROPIA model (Fountoukis and Nenes, 2007) has often been used in the past for field datasets (e.g. Guo et al, 2015), in part due to its lower
simple approach to this

computing requirements compared to E-AIM. Furthermore, Guo et al (2016) pioneered the use of an iterative approach to approximate unmeasured ammonia
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criteria can be applled to Exploration of the INHS3 sensitivity for the FIREX-AQ LA test dataset shown in the main panel. After 500 iterations adjusting Guo et al 2015), in part due to its lower computing requirements compared to E-AIM. Furthermore, Guo et al additional constrains (Ibunkule et al, 2020). The reasons for the more consistent EAIM behavior (also observed for other

NH3, the model gets the nitrate partitioning almost spot on (black points show 60 points that did not converge after 500
iterations), while the change in ammonia is overall still within the measurement uncertainties, hence the rather poor
partitioning in the model run with straight inputs is not indicative of any major problems with the model.

Estimating pH when inputs are missing

(2016) pioneered the use of an iterative approach to approximate unmeasured ammonia to derive pH and
used this for the data from the NSF WINTER campaign. A comparison of the output of AMATI with the
ISORROPIA-II data in Guo et al, (2016).

every case. datasets) is still under investigation, but is like related to (a) the exclusion of OH in the configuration used and (b) the

higher fidelity and complexity of the E-AIM model.

Comparison of model outputs for volatile species
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