A comparison of ambient measurements of NO\textsubscript{2}, CO, PM\textsubscript{2.5}, and O\textsubscript{3} during the COVID-19 pandemic with a climatological multiple linear regression model for various U.S. cities

Jeff Peischl1,2, Kenneth C. Aikin1,2, Brian C. McDonald1,2, Colin Harkins1,2, Owen R. Cooper1,2, Kai-Lan Chang1,2, Andrew O. Langford3,2, Ann M. Middlebrook2,3 and Steven S. Brown2,3

1Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder; 2NOAA Chemical Sciences Laboratory, University of Colorado Boulder, Department of Chemistry

1. Introduction

- U.S. air quality monitoring network data are used to
- inform the public of the extent and magnitude of pollution
- evaluate the effectiveness of emission controls
- constrain air quality models
- During the COVID-19 pandemic, state and local governments implemented lockdowns to reduce the spread of the disease, resulting in reduced traffic and on-road emissions beginning in Spring 2020
- We use measurements of NO\textsubscript{2}, CO, PM\textsubscript{2.5}, and O\textsubscript{3} and a multiple linear regression model to predict pollution levels, controlled for meteorology, in 9 U.S. cities and compare the model to observations to determine how emissions and atmospheric chemistry may have changed during the pandemic.

2. Data

- Air quality monitoring data for CO, NO\textsubscript{2}, O\textsubscript{3}, and PM\textsubscript{2.5} were downloaded from the Environmental Protection Agency’s Air Quality System (https://www.epa.gov/airnow)
- when possible, the Core Based Statistical Area (CBSA) dataset is used, which includes multiple measurement sites
- Meteorological data were downloaded from NOAA’s National Center for Environmental Information’s Integrated Surface Data (ISD) for the nearest large airport (https://www.nci.noaa.gov/pub/data/noaa/isd-led)
- The Stringency Index (SI) is used as a metric to determine the severity of the lockdowns (Hale et al., 2021)

3. Multiple Linear Regression (MLR) model

We use a multiple linear regression (MLR) model (similar to de Foy & Schauer, 2019) to account for decadal trends and meteorological factors:

\[x_i = c_0 + c_1 y + c_2 T + c_3 P + c_4 W + c_5 H + c_6 WE + e_i \]

where \(x_i \) is a fit of daily max. 8-hr O\textsubscript{3} (PMDAB) or daily avg. CO, NO\textsubscript{2} or ln(PM\textsubscript{2.5}) for each month, \(i \) from 2010-2019

\(y \) is the year

\(T \) is the daily avg. temperature

\(P \) is the daily avg. precipitation

\(W \) is the daily avg. wind speed

\(H \) is the daily avg. relative humidity

\(e_i \) is the residual

Example: Denver carbon monoxide

4. Comparison of measurements with modeled predictions in the absence of COVID for 2020

Observed and predicted NO\textsubscript{2} and O\textsubscript{3} are plotted for 9 U.S. cities, as are state-level stringency indices, the FIVE inventory ratio of 2020 vs. 2019 for NO\textsubscript{x} (see panel 6 for details), and a ratio of the 2020 observed to predicted concentration.

A two-sided t-test was run each week. Using a 10% confidence interval, observations significantly lower than the predictions are plotted in blue, significantly higher in red.

5. Model Results

Lockdown effects for all cities from March 29 – April 11:
- most cities experienced a decrease in NO\textsubscript{2} and CO
- many had decreases in PM\textsubscript{2.5}; all cities had lower O\textsubscript{3}
- avg. changes: NO\textsubscript{2} –18%, CO –13%, PM\textsubscript{2.5} –7%, O\textsubscript{3} –8%

6. Comparison of Modeled Effects with Inventory

Consistent with North American results from Gkatzelis et al. (2021), who analyzed 150 published studies of 6 continents:

Comparison of observed/model-predicted ratios with ratios for 2020/2019 of a fuel-based primary emissions inventory, FIVE (Harkins et al., 2021), for March 29 – April 11. A CO background has been subtracted from the observed and predicted values for a comparison with emissions. Markers for cities with only one monitoring location are outlined in gray.

7. Conclusions and Future Work

- A multiple linear regression model that accounts for meteorology is used to determine daily lockdown effects for all cities
- Results are consistent with studies summarized by Gkatzelis et al. (2021) and mostly consistent with a fuel-based inventory (FIVE)
- Emissions reductions generally led to decreases in O\textsubscript{3} and PM\textsubscript{2.5}. While the reasons for such decreases are not definitive, our model could help guide where the application of a more sophisticated chemistry model that relates NO\textsubscript{x} and VOC reductions to O\textsubscript{3} and PM\textsubscript{2.5} formation may be of value to air quality managers.

References

De Foy, B. and Schauer, J. (2019), Changes in spatially resolved PM\textsubscript{2.5} concentrations in Fresno, California, due to NO\textsubscript{x} reductions and variations in diurnal emission profiles by day of week, Elements, doi:10.1038/s41978-019-00554-4

Gkatzelis, G. et al. (2021), The global impacts of COVID-19 lockdowns on urban air pollution: A critical review and recommendations, Elements, doi:10.1038/s41978-021-00419-9

Contact: jeff.peischl@noaa.gov