A comparison of ambient measurements of NO₂, CO, PM_{2.5}, and O₃ during the COVID-19 pandemic with a climatological multiple linear regression model for various U.S. cities

Jeff Peischl,^{1,2} Kenneth C.Aikin,^{1,2} Brian C. McDonald,² Colin Harkins,^{1,2} Owen R. Cooper,^{1,2} Kai-Lan Chang,^{1,2} Andrew O. Langford,² Ann M. Middlebrook,² and Steven S. Brown^{2,3} ¹Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, ²NOAA Chemical Sciences Laboratory, ³University of Colorado Boulder, Department of Chemistry

I. Introduction

- U.S. air quality monitoring network data are used to
 - inform the public of the extent and magnitude of pollution
 - evaluate the effectiveness of emission controls
 - constrain air quality models
- During the COVID-19 pandemic, state and local governments implemented lockdowns to reduce the spread of the disease, resulting in reduced traffic and on-road emissions beginning in Spring 2020
- We use measurements of NO_2 , CO, $PM_{2.5}$, and O_3 and a multiple linear regression model to predict pollution levels, controlled for meteorology, in 9 U.S. cities and compare the model to observations to determine how emissions and atmospheric chemistry may have changed during the pandemic

2. Data

- Air quality monitoring data for CO, NO_2 , O_3 , and $PM_{2.5}$ were downloaded from the Environmental Protection Agency's Air Quality System (https://www.epa.gov/aqs)
 - when possible, the Core Based Statistical Area (CBSA) dataset is used, which includes multiple measurement sites
- Meteorological data were downloaded from NOAA's National Center for Environmental Information's Integrated Surface Data (ISD) for the nearest large airport (<u>https://www.ncei.noaa.gov/pub/data/noaa/isd-lite/</u>)
- The Stringency Index (SI) is used as a metric to determine the severity of the lockdowns (Hale et al., 2021)

3. Multiple Linear Regression (MLR) model

We use a multiple linear regression (MLR) model (similar to de Foy & Schauer, 2019) to account for decadal trends and meteorological factors

 $x_{i} = c_{0} + c_{1}Y + c_{2}T + c_{3}P + c_{4}WS + c_{5}H + c_{6}WE + \epsilon$

where x is a fit of daily max. 8-hr. O_3 (MDA8) or daily avg. CO, NO₂, or ln(PM_{2.5}) for each month, *i*, from 2010–2019

Y is the year *P* is the daily avg. precipitation H is the daily avg. relative humidity and ϵ is the residual

T is the daily avg. temperature WS is the daily avg. wind speed WE is I for weekend, 0 for weekday

7. Conclusions and Future Work

- A multiple linear regression model that accounts for meteorology is used to determine daily lockdown effects for all cities \bullet
- Emissions reductions generally led to PM_{25} and O_3 reductions, at least in the early springtime
- Can compare directly with published studies of U.S. cities for any range of days
- Will analyze weekend regression results, e.g., NO₂ and O₃

References

de Foy, B., and Schauer, J. (2019), Changes in speciated PM_{2.5} concentrations in Fresno, California, due to NO_x reductions and variations in diurnal emission profiles by day of week, *Elementa*, doi:10.1525/elementa.384 Hale, T. et al. (2021), A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker), Nature Human Behaviour, doi:10.1038/s41562-021-01079-8 Gkatzelis, G. et al. (2021), The global impacts of COVID-19 lockdowns on urban air pollution: A critical review and recommendations, *Elementa*, doi:10.1525/elementa.2021.00176 Harkins, C. et al. (2021), A fuel-based method for updating mobile source emissions during the COVID-19 pandemic, Environmental Research Letters, doi:10.1088/1748-9326/ac0660

en materia (aletter en

aistiff Allinitati

2020