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Introduction Quantification of dusk/dawn layers TINa midnight layers’ relationship to MTM and TIDs

This study presents the first lidar observations of regular occurrences of :md- o Density on 02 Now 2013 ) Volume Mixing Ratio p Na Mixing Ratio on 02 Nov "2’9‘15@ Bouldercio”  Na Mixing Ratio on 03 Nov zm{s_@agumew 1 N Mising Ratoon 07 o 201@ B
latitude thermosphere-ionosphere Na (TINa) layers over Boulder (40.13°N, 150 sl et i 150 . . ot \z ‘y‘p%m?}, y& tr P ) $ I 150 o |
o Dusk 1.0-2.5UT - . . , |
105.24°W), Colorado. = Dawn 10,012,507 | O Na density profiles, and the volume i M’W‘, £ Sl é ‘V | T oo fL
The meteoric metal layers are of great interest scientifically because: ?1?8 mixing ratio profiles are plotted in log-10 ?gg :’a".‘»‘ A *‘ 5/( . I\ .t ) 525 fﬂi? i.n i
“1: - - © i b ' : © B b
1. Th(?y are excel_lent tracers for profiling temperatures and winds along with 2 100| scales for the dusk and dawn layers. g2l | ' éz z i
various waves in the mesosphere and thermosphere. < o0 'O The densi ty profiles of dawn layers show T | | |§g < 1o :
i i - 80 | - | ,, ‘
2. They are a natural laboratory for exploring upper atmospheric composition, ey R e MY E e . . 4110 ki, ab ; o $ ; § EE— V— 3
chemistry, dynamics, energetics, and electrodynamics. ., (c)Densityon 11Nov2013 ' (d) Volume Mixing Ratio a turning point around 110 km, above an 0 12 3 szeria(Tlr;ee(Hs o2 EARSASTELSRES S EEREREEEEEEEEE
3. They provide information on cosmic dust input flux, entry velocity, and | byl ' l below Wh'Ch the slopes are dlffe_re:nt. _ S ”.11; — e e
composition in terrestrial and other planetary atmospheres. < 120} Cor_re_spondmgly, the volume mixing ratio T ] B ' R A
S 110} exhibits a broad peak above ~110 km. A I A DS N RO N N P55 5 NN SO SRS W
Resonance fluorescence lidar Is an effective tool for studying meteoric metal < 90 1 O Dusk layers exhibit a narrower mixing . ? w T S
Iayers In the upper atmosphere. The maln Iayer Of mEtaI atoms (75_105 km) 10‘2 16'1 100 101 102 103 104 105 10‘13 101‘12 10“11 10"10 10'9 ratlo peak above ItS denSIty Slope turnlng 2 gool _ - é gg,_ Ié é 800_"’_
have been observed from the ground for nearly a century, but neutral metal oo (e)Densityon 27 Nov2013 ' (f) Volume Mixing Ratio point that is usually several kms lower B X ‘MW AR
Iayers In the -thermosphere We-re not dlscovered un-lEII Chu, Yu’ et al. (2011) /E\::;g B:jvkno1g_§-?g-:—UT | g:i/kn than that Of the daWn Iayersl 600 I . I I I 600_ 600_0I3_
reported the first lidar observations of thermosphere-ionosphere Fe layers from LM 'O such i 4 mixi ; y S P
- - o 2015-11-02: dTEC @ Lat = [40.0, 41.0]N 020 -11-02: = .0, 44. =
Antarctica. Since then, thermosphere-ionosphere metal (T1Mt) layers have been S 110 - uch increased mixing ratios provide EX S g bkt e [ | o ey B
reported from high to low latitudes, including Fe, Na and K layers. 2ol ! | strong evidence for In-situ production i | e g
Observations of TINa layers (100-150 km) have opened a new door to o | w==——" | OfNaabovetheturning point (~105- -, o [ - 2N
. . D apaes 0 1 2 3 4 5 13 12 -11 -10 -9 5 , o 005 | 5 . BN Sy 'y e § ., [did
advance understanding of fundamental processes in the space-atmosphere 1010 ,:IZ D;‘:]Sn;o(cnlfg) e Mil?ng e 110 km) for both the dusk and dawn | S - | =) g
interaction region, especially in the E-F regions where measurements of the layers. x *
neutral atmosphere are scarce and plasma-neutral interactions are rich. | _
2015-11-03: dTEC @ Lat = [45.0, 46.0]N
L I A o 0 T LT . G [ A ¢ R
) . . . . o R G T e TP
Boulder TINa dusk and dawn layers TINa dusk/dawn layers’ relationship to tidal winds+q |, e
TINa layers (~0.1-1 cm-3) up to 150 km detected by high-sensitivity Na 7 (1) Relative Na Dersity Perturbations (%) Mk
lidar exhibit dusk and dawn layers with downward phase. Note that 7 UT oo ] ol e N e L - | | . R
corresponds to midnight in Boulder, while 1 and 13 UT correspond to dusk and 4 140 e R I e e e e e e LR s e e e
dawn (6 pm and 6 am local time). 130 { 150 1301 g Na volume mixing ratio plotted in uneven color scales; neutral temperature obtained fmm UIUC’s
125 A 125 A -
iy 1 e Density o D2 Nov a3, vud, . Ib) Raletive Na Denilty Perturbationd U 1 o0 120 75 Fabry-Perot Interferometer website and dTEC image observed by GPS satellites above Boulder
R\ i ' il HEY lo 1151 ]| (40.13, 105.24W).
E 135 1351 1% 135 - - :g
*-’130: 130: 130: 100 - 100 - - - - - - -
o o] B Y 95 - 50 95- 25 = QOccasional midnight layers can be related to strong TIDs (Traveling lonospheric Disturbance)
£ q 1885 o 1 oo | o % observed in TEC (Total Electron Content).
- , o] - e [l | B - A 3050 el GG = Midnight TINa layer often occurs simultaneously with the neutral midnight temperature
: 1(é) r?lalll)e?lsﬁyzn8119N£/1210}2313 14|og10 (2) I;elgtn?;eLrl\la5De6nsZty8Pe%tl112b1a1tll)znés(‘;:) - 418 3U4'5 b |7_|_8 g 1(E)11121314 218 3U4'5 b |7_|_8 g 1(E)11121314 21 s 3U4 56 |7_|_8 9 1(%11121314 maximum (MTM)
T T : 3 - ) niversal rime niversal rime niversal Time
Jjg: 138 150 (,d) Relaltive Na Den Pert. (%%) 100 150 (g) Re!ativg Tgmp ,P*?”', (%) | 20 150 (f)IV\Ilinq F]’er]turbelttignIs @ prlc!er ;
2 £ 145 oy 145 - - v" TEC measurements show there is a mesoscale TID propagating in the zonal direction on 02 and 03
g s 0 12 i i Nov 2015 when the midnight TINa layer occurs. The slow westward trending TID signal shown in
= e ] | - 50 _ . : . ] . -
30 @ 1 E]SQ ,§1gg TEC plots are likely to correlated with electric dynamics (plasma instability).
Ly | : 1 P | < el <0 v" MTM can be related to the midnight TINa layer because both TINa layers and thermospheric
15Oo 12345678 91011121314 (ﬁ) I;elgh\ieilas 6 7 8 910111213 14 . 15Oo 1 (|2) hi)alé\}l|x5|ng6R7atlg@%é%J|1d1ezr 1,31 glgg Og ](1)(5)“ temperature are maximized near midnight. The MTM happening from 5 to 8 UT on 03 Nov 2015
us] U : us| §TO my‘l 3 »w 1001 el perfectly corresponds to the TINa layer descending from ~125-120 km to ~110 km around
E sl G ERl 90 90 midnight. More evidently, strong MTM makes temperature increase after 5 UT on 07 Nov 2015
25| 8 o 15, 50| o . R while midnight layers reach high altitude.
gﬁg ﬁg ‘ 012345678 91011121314 012345678891011121314 012345678 91011121314
<ol N 1101 N UT Hours UT Hours UT Hours
el f § Pl Full range (75-150 km) contours of Na density, relative density perturbation, volume mixing
0123 4 5 6T7¢8 911121314 012345¢67 891011121314 0123456738 910111213 14 - - . . - °
Universal Time (h) . Universal Time (h) | Py LniversalTime (h ratio, relative temperature perturbation and wind perturbations on 11 January 2014 over Boulder CO N C| usions
relative Na density perturbations = (40.13R, 105.24N)
o Na densi " Na densi p N;v; New discoveries of Boulder TINa layer interactions with tidal winds, MTM and TIDs provide a great
P N~ V4 hen_swy -y t“}’;’;e gver_age a ,le"S‘ty profile opportunity to study the plasma-neutral coupling and fill some data gaps of ICON mission. Boulder
P°na = ighttime average Na density profile p < Dawn/dusk layers are likely to be correlated with semidiurnal tides over Boulder because TINA layers indicate that thermospheric metal layers are likely a global phenomenon, providing
Na volume mixing ratio = R - of the downward-progression phase speeds. potential tracers for exploring the properties of the space atmosphere integration region, especially
atmosphere ] ] ] ) .. .. I _
¢ Vertical phase speed roughly estimated by tracking the maximum mixing ratio is ~10 km/h, around altitudes of 100-200 km.
« The TINa dawn layer exhibits ascending features in the envelope of Na translating to ~2.7 m/s, which Is a typical semidiurnal tidal phase speed from 130-150 km 1. TINa layers (~0.1-1 cm) up to 150 km detected by high-sensitivity Na lidar exhibit dusk and
total density (e.g., Figure (a)) from 8-9 to ~12UT but descending features (Friedman et al., 2013). The dusk layer is narrower in time span and has a slower vertical phase | "
In the maximum mixing ratio (e.g., Figure (f)) from ~140-150 km at d of ~1.3 m/s, which i istent with idi | tidal ph df 105t dawn layers with downward phase.
10-11UT to0 ~120-110 km at ' 12 13UT igf)ek 0 (F ; dm S’Wt 'f 2'2(1:2;15'3 cht with-average semidiurnal tital phase speed 1rom 0 2. Increased Na mixing ratios provide strong evidence for in-situ production of Na above the turning
~1U- ~12U— ~1ll- - m (Friedman et al. . -
. o L . ’ oint (~105-110 km) for both the dusk and dawn layers.
« Dawn layer is observed every night if observation time is sufficient. . : : . . D ( ) . ayers. . . . .
. The TINa dusk laver beains (o descend from ~125-120 km to ~110 km at ¢+ Three different layers occur overnight on 11 Jan 2014 including TINa dusk, dawn and 3. Dawn/dusk layers are likely to be correlated with semidiurnal tides, while terdiurnal tides are
Y J midnight layers. likely the cause of midnight layers.

1 UT and merges with the main metal layer near 4 UT.
» Between dusk and dawn layers, some midnights (e.g., 11 Nov 2013) % As shown In relative temperature perturbations and wind perturbations, the terdiurnal tide wave

show a third layer, while other nights (e.g., 2 Nov 2013) do not appear. structure found is likely related to the midnight layers.

4. Midnight layers can be related to strong TIDs and MTM.



