The Role of H₂S in Archean **Organic Haze Chemistry**

Nathan W. Reed, Margaret A. Tolbert, Eleanor C. Browne

INTRODUCTION

- > Methane-produced organic haze, CO_2 , and volcanic/biological H_2S were likely present in the Archean atmosphere.
- > Current view of Archean atmosphere separates their respective chemistries.
- > Organic haze production is currently thought to decrease with high CO $_2$ to CH $_4$ concentration ratios (greater than 1:1).

CURIOUSITIES EXPLORED

- \succ What is the interplay between H₂S and haze formation chemistry? How does this change as a function of CO2?
- > Could this interplay impact climate, habitability, or atmospheric chemistry of the Archean Earth?

METHODS

- Generate haze particles with trace amounts of H_2S via a flow system and UV reaction cell.
 - Analyze with quadrupole aerosol mass spectrometry (Q-AMS) or Scanning **Mobility Particle Sizer** (SMPS).
- > Measure the particle composition, size, and number in real time.

Laboratory experiments showed trace H₂S increased organic aerosol production in high-CO₂ organic haze chemistry. Signs of the formation of organosulfur and sulfate aerosol were also observed.

With 5 ppmv H₂S, the total aerosol mass loading increases with increasing initial CO₂ concentration

Standard sulfate fragmentation patterns could imply a mixture of sulfate and organosulfate aerosol

Particle density is higher with H_2S and initially increases with CO_2 , but slightly decreases after 0.5% CO_2

CONCLUSIONS & SIGNIFICANCE

- \succ Trace amounts of H₂S (5 ppmv) in Archean-like gas mixtures produced organic and sulfate aerosol, even at higher CO_2 : CH_4 concertation ratios.
- > There was no S_8 found at each CO₂ concentration, and only low H_2SO_4 at higher CO_2 concentrations.
- **Evidence leaned toward** organosulfur and organosulfate aerosol.
- > These results *defer from the* current thought of Archean atmospheric sulfur reservoirs.
- > This may be significant for interpreting the sulfur isotopic records, understanding the **Archean atmosphere/climate** and the early evolution of the atmosphere.

1. University of Colorado Boulder & Cooperative Institute for Research in Environmental Science (CIRES), Boulder, CO 80309

Trainer, PNAS, 2006, 103, 18035-18042; DeWitt, Astrobiology, 2010, 10, 8, 773-781; Kasting, Science, 2001, 293, 819-820; Farquhar, Earth and Planet. Sci. Lett., 2003, 213, 1-13; Domagal-Goldman, Earth and Planet. Sci. Lett. **2008**, 269, 29-40; Arney, Astrobiology, **2018**, 10.1089/ast.2017.1666; Hu, Astrophysical Journal, 2013, 769, 6; Kump, Nature, 2007, 448, 1033-1036; Bates, Atmos. Chem. Phys., 2006, 6, 1657–1732; Horst, Astrobiology, 2012, 12, 9, 809-817; Horst, The Astrophysical Journal Letters, 2013, 710:L10, 1-6S; Reed, ACS Earth and Space Chem, 2020, 4, 897-904

