ABSTRACT

Impervious surfaces are traditionally mapped from remotely sensed imagery using image classification algorithms. The surface type is complex; it consists of many distinct materials, for which image classification and aggregation approaches are used to map it. This work explores the use of fully convolutional neural networks (FCNN), specifically, UNet, in mapping these complex features at the pixel level from DigitalGlobe WorldView-2 high resolution multispectral satellite imagery. Surface reflectance (SR) products were used. Initial results are promising in both qualitative and quantitative assessment when compared to automated products, using ROC Area-Under-Curve (AUC), F1-score, and mean average precision (mAP) as performance metrics.

Fully Convolutional Neural Network for Impervious Surface Segmentation in Mixed Urban Environment

Joe McGlinchy¹, Brian Johnson⁴, Brian Muller^{2,3}, Maxwell Joseph⁵, Jeremy Diaz⁶

¹University of Colorado at Boulder, CIRES Earth Lab Analytics Hub ²University of Colorado at Boulder, Program in Environmental Design ³University of Colorado at Boulder, Community Engagement Design and Research Center

⁴Aerospace Corporation ⁵SilviaTerra ⁶Penn State University

128 128

UNet with a Resnet-152 encoder showed satisfactory performance in classifying impervious pixels. Test set performance metrics were highest, on average, for Blue-Green-Red-NIR1 channels. Future work will focus on utilizing different encoders to take advantage of all spectral bands of WorldView data, as well as evaluate generalizability to other satellite SR products.

Bands	Test F1			Test AP			Test AUC			
	min	mean	max	min	mean (mAP)	max	min	mean	max	total avg.
B-G-R	0.497	0.666	0.917	0.559	0.715	0.887	0.646	0.723	0.825	0.701
B-G-R*	0.593	0.714	0.886	0.646	0.746	0.901	0.706	0.768	0.835	0.743
B-G-R-N1	0.556	0.709	0.906	0.736	0.82	0.915	0.736	0.807	0.855	0.779
All-8	0.483	0.629	0.788	0.767	0.845	0.933	0.734	0.795	0.856	0.756
LULC	0.733	0.793	0.878	0.684	0.767	0.864	0.733	0.765	0.820	0.775
BUE	0.644	0.719	0.846	0.481	0.574	0.744	0.530	0.560	0.630	0.647
	·	•			·		•	•	•	

FINDINGS & FUTURE WORK

SCAN ME