
Benjamin L. Deming, Mason L. Wilson, Paul J. Ziemann

Measurements of the fates of substituted alkoxy radicals Department of Chemistry, Cooperative Institute for Research in Environmental Sciences

Motivation

- Volatile organic compounds (VOCs) are emitted from natural sources, human activities, and humans themselves
- Atmospheric oxidation often leads to alkoxy radical intermediates
- Alkoxy radical isomerization leads to larger products, forming more aerosol
- Decomposition leads to smaller products, less likely to form aerosol
- Branching between decomposition and isomerization still poorly understood

Methodology

- Experiments performed in an 8 m³ Teflon chamber
- Generate specific alkoxy radicals via photolysis of synthesized alkyl nitrites • Quantify gas-phase carbonyl products with offline methods
- DNPH cartridges \rightarrow HPLC-ESI-ToF-MS
 - PFBHA coated denuders \rightarrow HPLC-ESI-ToF-MS
 - Tenax \rightarrow GC-FID
- Method sampling efficiencies confirmed with offline calibrations and additions of standards to chamber.

Measured carbonyl concentrations consistent between methods

- Isomerization branching determined by difference
- Compare with predictions made by structure-activity relationships (SARs)
- Decent agreement for simple alkyl alkoxy radicals

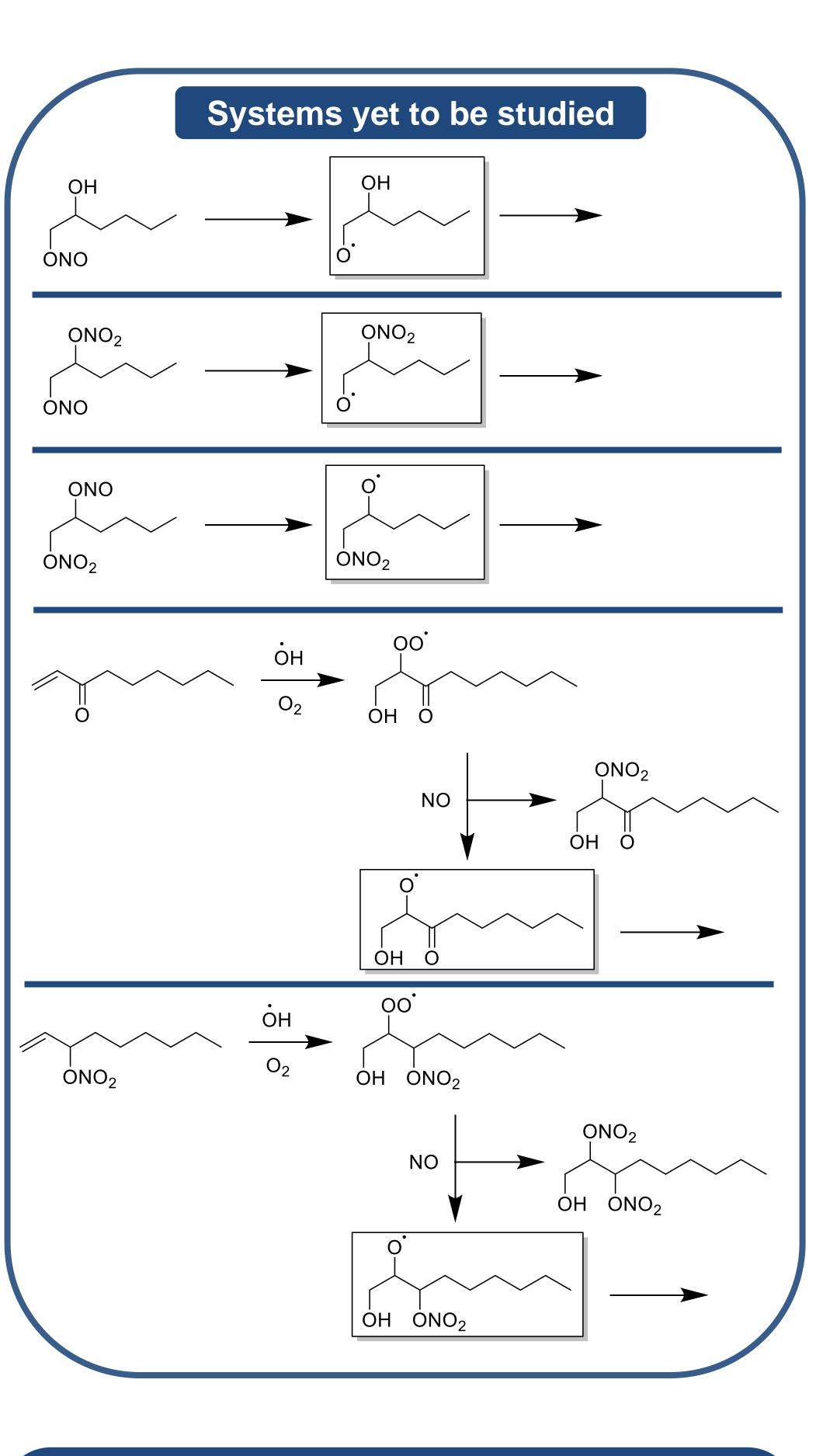
Alkoxy Radical

Structure

Both SARs strongly overpredict decomposition for hydroxyl and carbonyl alkoxy radicals Further work will investigate branching of nitrates and multifunctional compounds

Ō.	
$1 + 5^3$	2 (+
Ĥ Ĥ	Isomer
\cap	
$15+5^3$	
· H	Isomer
\cap^{\bullet}	·
$\sqrt{15+5^3}$	2 (+
2m	
H '	Isomer
O.	
HO $1 \xi + \xi^3$	2 (+
~, ' , ' , ` , ` , ` , ` , ` , ` , ` , `	
	Isomer
\circ	
$HO_{\frac{1}{5}}$	2 (+
→, , , , , , , , , , , , , , , , , , ,	
	Isomer
O.	
$\sqrt{\frac{1}{2}}$	2 (+
√ √, , , , , , , , , , , , , , , , , ,	
пυ	Icomor

Isomer


- ^a Measured values are averages of applicable measurements
- ^b Novelli et al, 2021
- ^c Atkinson, 2007
- ^d Not detected
- ^e Calculated by difference

Results

Measured and predicted alkoxy radical branching ratios.

lkoxy radical branching ratios.					
Dooction	Measured ^a	Predicted	Predicted		
Reaction		(SAR 1 ^b)	(SAR 2 ^c)		
1	n.d. ^d	0.6%	0.3%		
2 (+ O ₂)	4.0%	1.2%	1.2%		
3	n.d.	0.6%	0.5%		
somerization ^e	96.0%	97.6%	98.0%		
1	1.6%	18.7%	1.5%		
2	0.1%	0.1%	0.0%		
3	2.0%	18.7%	2.8%		
somerization ^e	96.2%	62.5%	95.6%		
1	0.7%	0.2%	0.2%		
2 (+ O ₂)	0.9%	0.4%	1.1%		
3	12.5%	65.3%	7.4%		
somerization ^e	85.9%	34.1%	91.3%		
1	18.3%	86.0%	84.8%		
2 (+ O ₂)	0.8%	0.2%	0.2%		
3	n.d.	0.1%	0.0%		
somerization ^e	80.9%	13.7%	15.0%		
1	52.7%	0.3%	4.1%		
2 (+ O ₂)	n.d.	0.0%	0.1%		
3	9.8%	99.6%	90.8%		
somerization ^e	37.6%	0.1%	5.1%		
1	0.9%	0.0%	0.0%		
2 (+ O ₂)	1.5%	0.0%	0.0%		
3	41.1%	100.0%	100.0%		
somerization ^e	56.5%	0.0%	0.0%		
es of annlicable measurements					

Conclusions

Simple alkoxy radical branching ratios predicted by SARs

More complex radicals less likely to decompose than expected

Increased isomerization leads to more

functionalization and more SOA

