
NOAA RESEARCH  •  EARTH SYSTEM RESEARCH LABORATORIES •  GLOBAL LABORATORY

Object-Oriented Python Framework for Operational Graphics
Craig Hartsough1,2, Christina Holt1,2, and Brian Jamison1,3

1 National Oceanic and Atmospheric Administration, Global Systems Laboratory (GSL)
2 Cooperative Institute for Research in Environmental Sciences (CIRES)

3 Cooperative Institute for Research in the Atmosphere (CIRA)

NOAA GSL Graphics

Advantages

The Global Systems Laboratory (GSL) at NOAA in Boulder, Colorado,
develops and tests many meteorological models and analyses,
including the High-Resolution Rapid Refresh (HRRR) model. GSL
provides graphical forecasts to the public using a public web interface:
https://rapidrefresh.noaa.gov/hrrr/HRRR/Welcome.cgi.

Web graphics have been generated using the NCAR Command
Language (NCL) for about 15 years. In 2019, NCAR made the
decision to transition to Python for graphic display and discontinued
support for NCL. GSL has used this opportunity to also move to
Python scripting language to generate its graphics forecasts.

Framework (UML Diagram)

Capabilities and Code

Ease of Use

Resource Usage

Contact

In contrast to our legacy NCL-based graphics system, Python scripting
under an object-oriented framework has several advantages. The
design allows for minimal duplication of code by moving all
configuration to YAML files. Parallelization, scripting, and graphics
generation can all be done with the same language. Python also
supports a suite of graphics packages, and the resulting scripts are
extremely portable.

The new Python-based graphics package provides several advantages
for our weather-modeling scientists
● machine-level support
● suitable for both research and real-time activities
● identical graphics for any UPP output
● parallelization at the workflow level, or job level to minimize resource

usage
● industry standard approaches

● Configuration-defined colors, contour levels, and variable 
transformations

● Configuration lists for choosing which maps to plot
● Plotting UPP output from RAP, HRRR, RTMA
● Plot “plan view” maps and SkewT diagrams at specified lat/lon
● Python driver for running map creation per forecast cycle
● Parallelization using Python Subprocess (single node)

Try the code from the Official NOAA-GSL GitHub Page:
https://github.com/NOAA-GSL/pygraf

Strategies
● Two run strategies:

○ “One Job” (Python only) is a 
single batch job and the run 
script waits on new Grib2 files

○ Metatask (Rocoto construct) 
submits 1 batch job per 
forecast hour when Grib2 is 
available. AKA workflow 
parallelization.

● Both parallelize map creation 
using multiprocessing on a single 
node. 

● Only Python uses 
multiprocessing for Skew T, serial 
in NCL with some workflow 

Usage Experimental Setup:
● Real-time runs using 1-minute 

recurring cron with Rocoto
● 28 hourly cycles on Jet
● 420 Maps per forecast hour -- 20 

field maps for 21 tiles
● 91 SkewTs per forecast hour
● 24 hour forecasts at SYNOP, 18 

hr otherwise
● parallelization.

Cores/node Mem/Core
kjet 40 2.4 Gb

vjet 16 4 Gb

Legacy NCL

Python

Python

* Expected time to create all maps for a forecast hour

* Expected CPU time to create all maps for a forecast hour

* Total time to create all maps for a cycle

Craig Hartsough
CIRES at NOAA/GSL
Craig.Hartsough@noaa.gov

Christina Holt
CIRES at NOAA/GSL
Christina.Holt@noaa.gov

Brian Jamison
CIRA at NOAA/GSL
Brian.D.Jamison@noaa.gov

https://rapidrefresh.noaa.gov/hrrr/HRRR/Welcome.cgi
https://github.com/NOAA-GSL/adb_graphics

