

Emission factors and evolution of SO₂ measured from biomass burning during FIREX-AQ

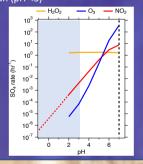
Pamela S. Rickly^{1,2}, Hongyu Guo^{1,3}, Benjamin A Nault^{1,3}, Pedro Campuzano-Jost^{1,3}, Jose L. Jimenez^{1,3}, Andrew Rollins²

¹Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA

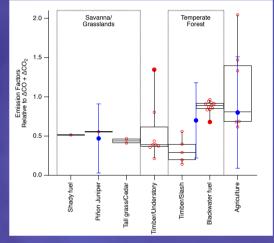
²Chemical Sciences Laboratory, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305, USA

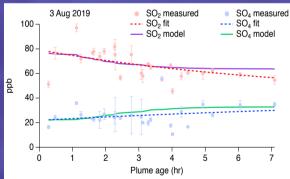
³Department of Chemistry, University of Colorado, Boulder, CO 80309, USA

INTRODUCTION


- Sulfate aerosols cool the Earth's surface
- They produce harmful effects for human health
- Sulfate is formed through the oxidation of SO₂
- Biomass burning emits large concentrations of SO₂
- Large uncertainty in SO₂ emission factors have been reported
- Conversion mechanism of SO_2 to sulfate remains uncertain creating underprediction of sulfate in atmospheric models by up to a factor of two (Wang et al., 2016; Shao et al., 2019; Wang et al., 2014).

METHODS




- Laser-induced fluorescence used to measure SO₂
- Sulfate measurements from the aerosol mass
 - spectrometry group
- DC-8 platform used for measurements of biomass burning smoke plumes
- F0AM 0-D box model used for modelling conversion of SO₂ to sulfate in a more neutral environment (pH 7) compared to urban (pH <3)

EMISSION FACTORS

- Emission factor data during flaming conditions agree well with compiled field values when combined based on environmental characteristics.
- Large variation in temperate forest data suggests a more limited definition may be necessary.
- Overall, difference between flaming and smoldering emissions is unclear with flaming stage = 0.62 ± 0.27 g kg⁻¹ and smoldering stage = 0.56 ± 0.26 g kg⁻¹.

MODELLING

- FOAM mechanism developed with the inclusion of O₃, H₂O₂, NO₂, and HCHO aqueous phase S(IV) oxidation.
- Produces S(IV) pH dependence
- Produces pH dependence of sulfate production as previously observed for each oxidant
- Reproduces downwind SO₂ trends within 10% and sulfate trends within 15% for the Williams Flats fire.
 - $O_3 + SO_3^{2-}$ is the largest contributor to sulfate production.

References