Mapping between shallow cumulus cloud field properties and three-
dimensional surface solar irradiance
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Motivation & Aim Machine Learning Approaches Relative Importance of Cloud Properties
e Ubiquitous shallow cumulus clouds exhibit highly 3D structure * Seek relationships between 6 cloud field * The relative importance of the various input cloud field
leading to complex variability in surface solar irradiance (SSI). properties and 7 SSI PDF fit parameters (Table 1). properties in arriving at the trained RF and ANN algorithms is
(a) Random Forest (b) Artificial Neural Network quantified by impurity-based and permutation-based
Table 1. Machine learning inputs and outputs. _ (Cloudfield properties f. DUWP) N, 4. Do wy cos(SZA) importance metrics (Table 2).
* Weaimt hine learning to establish direct o DI R B Do cosS2n Cloud fild propertie
€ a_lm O_ use macni & _ Cloud field properties SSI PDF fit parameters / l \
relationships between the cloud properties and SSI beneath. (inputs) (outputs) Decision tree 1 Decision tree 2 Decision tree N Table 2. Relative importance of the input cloud field properties
Mean cloud fraction: Lognormal location parameter: -/.\‘p l/.\l l‘/.\- ) ) ] i
7. 6 Y .i'E. : ; h S ‘,.E m w Hidden layers RF impurity RF permutation  ANN permutation-
¢ dudhdudl dududndh dudndh . SN . . .
: : : : R Dispersion in liquid water path: Lognormal shape parameter: rediction 1 rediction 2 rediction N Importance (%0) Importance (%) Importance (%0)
* Such direct relationships are of great scientific interest to ] . P P P
understand the drivers of SSI va riability, as well as of practical Mean drop number concentration: Lognormal scale parameter: \‘ \ / Output layer: fc 63.0 742+4.1 68.0 + 4.0
. - . . N ean prediction: fit parameters
importance for efficient and accurate SSI predictions. Nc m ot e prediction: o POR T paremet
Mean projected cloud area: Normal location parameter: {6, s,m, u, 0, w; and w} D(LWP) 11.3 11.8+0.7 9.6 £+ 0.7
Ac p
Mean distance to nearest cloud: Normal shape parameter: Fig. 3. Machine learning architectures employed. N¢ 7.5 45+0.4 4.7+0.4
« .. Dc_
Cloud and Radiation Data | C-NN - | 7
Cosine of solz;;zz;;nth angle: Weight of small irradiance mode: A, 4.4 29402 91+06
cos w . .
'  Two fundamentally different algorithms, a random forest (RF) and

* Well resolved shallow cumulus cloud fields are generated from Weight of large irradiance mode:
. . o . . ' T i Do 6.6 31403 32403
large eddy simulation (LES) and realistic associated SSl is W2 anl ar.t|f|c;1a.I neural network {ANN), are used to build the o
calculated with Monte-Carlo 3D radiative transfer. relationships cos(SZA) 7.3 43+03 53405

(a) Observed Total Sky [mage (b) Simulated LES cloud and SSl fields
| : * For the RF, the impurity-based and permutation-based

Key F| nd I ngS importance both indicate that f is the most valuable input
followed by D(LWP).
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Complex 3D surface solar irradiance simulated beneath continental shallow cumulus clouds is well

predicted with just a handful of key cloud field properties using machine learning algorithms. _ _ | ,
* The permutation based importance is generally consistent for

the ANN, although it appears to make more use of A, at the
expense of f.

P Mo ™ T . Two fundamentally different algorithms perform indistinguishably well, and both value cloud fraction

%099 7 " 1.b radiation :‘ and liquid water as the most important inputs although detailed cloud properties also matter.
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: o 3-D radiation :_ Results have immediate use for surface energy assessments, with several other promising applications. + Even the lesser important inputs appear to provide predictive
_ ; ; : value. This demonstrates the complexity of the 3D SSI PDF;
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Fig. 1. Shallow cumulus clouds and associated SSI PDFs on the afternoon of 27 June Prediction of Surface Solar Irradiance
2015 in Oklahoma.
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* The observed shape of the SSI probability density function : . . ] = eirion l ] = e eirion l ] = i edirion :
(PDF) is only re rcl)oduced with 3pD radiati\Ye transf:lar (Fig. 1) * Predicted PDFfit parameters by the trained RF and 2 - e g -+ i g -+ i : * These results have direct application to modeling assessments
yrep & 2. ANN algorithms are used to reconstruct the SSI g 0.010 - g 0.010 - 0.010 - £ ol o PP di gf |
PDFs (Fig. 4) > L > ] L > ] of solar renewable energy, providing an accurate frequently
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Fig. 4. Six random predictions of SSI PDFs on held-out test data. to be available.




