

Introduction

Coherent Doppler Wind Lidar (CDWL)

- measures wind speed based on Doppler shift of aerosol backscatter signal
- relies on spectrally resolving narrowband aerosol backscatter signal

High Spectral Resolution Lidar (HSRL)

- provides quantitative aerosol optical properties by independently measuring aerosol and molecular backscatter signals
- uses optical filters to separate aerosol and molecular signals

Conceptual aerosol and molecular backscatter spectral distributions

Proposed Research:

- make spectrally resolved measurement of molecular backscatter signal using a CDWL
- provides aerosol to molecular backscatter ratio needed for HSRL measurements

Advantages:

- simultaneous wind and aerosol measurements
- spectral separation in digital domain
- potential new aerosol/temperature lidar

Modification

- Replaced digitizer and detector for extended bandwidth measurement
- Modified LabVIEW data acquisition software to acquire data at 1.5 Gs
- Developed analysis software
- •Characterized different noise sources

noise

Demonstration of high spectral resolution lidar (HSRL) measurements of aerosols and clouds using a coherent Doppler wind lidar

Sunil Baidar^{1,2}, Richard Marchbanks^{1,2}, Michael Zucker^{1,2}, Amanda Makowiecki^{1,2}, W. Alan Brewer²

1-CIRES, University of Colorado Boulder, Boulder, CO 2-Chemical Sciences Division, National Oceanic and Atmospheric Administration, Boulder, CO

for quantitative aerosol backscatter coefficient

