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1. A natural reference for underground 
navigation 
NOAA’s National Centers for Environmental Information (NCEI), in partnership
with the University of Colorado and industry develops geomagnetic field models
to be used by directional-drilling companies to navigate underground. The
magnetic field measured by a sensor near Earth’s surface is the sum of magnetic
field generated by a variety of sources. NCEI’s High Definition Geomagnetic
Model - Real Time (HDGM RT) models the core, crustal and disturbance
magnetic field and provide it to the customers in real-time.
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2. Real-time prediction of disturbance-field
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• Magnetospheric variations caused by space weather 
(Maus & Lühr, 2005 & 2010)

• Ionospheric daily variations (Chulliat et al, EPS, 2016)
• Induced variations in the Earth and Oceans
• Driven in real time with the Disturbance Storm Time index 

(Dst) and solar-wind data from the Deep Space Climate 
Observatory (DSCOVR) satellite

• Cloud-based implementation 
• Real-time validation against Honolulu (HON) geomagnetic 

observatory data

HDGM-RT Uptime (%) Median data 
latency (sec)

Response time 
(sec)

2015-2019 >95.84 3597 0.672

2020 - - < 0 -

👉 A major factor contributing to the high-latency is the delay 
in obtaining Dst indices, a key model driver .

3. Improving the latency of magnetic disturbance predictions using machine-learning modeling 
• To reduce our prediction-latency, we developed a Machine-learning (ML) model to derive a key

model input (Disturbance-storm-time index, Dst)
• One-step ahead Dst prediction solely based on solar-wind data.
• We use the solar wind magnetic field, plasma velocity and density measured at Lagrangian point

L1.
• Trained a Recurrent-Neural-Networks (RNNs), and specifically a variant with Long Short-Term

Memory (LSTM),
• Validated the ML model on test data and against other predictive models of Dst
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4. Summary

Model was trained & tested on hourly values of solar wind and Dst
data observed during 1997-2016 Real-time Dst prediction is available 👉 https://geomag.colorado.edu/dst-predict
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https://www.ngdc.noaa.gov/geomag/HDGM/hdgm_rt.html
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• Earth’s magnetic field provides a natural frame of reference for underground navigation
• NCEI/CIRES magnetic model, HDGM-RT provides comprehensive magnetic mapping
• To reduce our prediction-latency, we developed a Machine-learning (ML) model to

derive a key model input (Disturbance-storm-time index, Dst)
• The ML predicted model is solely driven by the solar-wind observations
• Our ML predicted Dst indices compare favorably with the observation and other

predictive models.
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Corrected dip (blue line) and model values 
(green line) when using the RT model 
(lower plot) and without using the RT 
model (upper plot)
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